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ABSTRACT

This document describes routine DOAOP. DOAOP computes a least-squares

estimate of the three-axis attitude of a spacecraft at a single time point, t .
r

It requires as input (1) a data set containing the body frame components,

Wi(tr) , of i = 1, ..., n > 2 observed unit vectors and (2) a data set of the

geocentric inertial frame components, Vi(tr) , of these same unit vectors.

The least-squares estimate will be generalized to a weighted least-squares
A

one if the Wi(tr) and/or Vi(tr) are multiplied by weighting factors before

being passed to DOAOP.

The main body of the document is divided into two parts: the first part dis-

cusses the basic attitude determination algorithm which is used in DOAOP;

the second part discusses DOAOP itself, including the auxiliary computations

and operations which have been implemented to support the basic algorithm.

Appendix A of the document discusses a new, alternate algorithm for computing

a least-squares estimate of spacecraft attitude and describes simulation tests

which were performed recently using it.
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SECTION 1 - INTRODUCTION

This document describes a digital computer routine, DOAOP, which computes

the three-axis attitude of spacecraft. DOAOP is an implementation of an

attitude-estimation algorithm which was derived originally in Reference i.

The main input required by DOAOP are (1) a data set containing the body frame
/%

components Wi(tr) of i = 1, ..., n z 2 unit vectors and (2) a data set con-
i

raining the geocentric inertial frame components, Vi(tr) , of these same unit

vectors. The attitude which is computed by DOAOP will be a least-squares

estimate of the spacecraft's attitude at the single time point t This esti-r

mate, however, will be generalized to a weighted least-squares one if the
/x f

Wi(tr) and/or the Vi(tr) are multiplied by weighting factors before being

passed to DOAOP.

A A

In practice, the W. are observed vector components and the V. are reference
I 1

/%

vector components. The W. are obtained from onboard sensors, such as Sun
1

f

sensors, magnetometers, or star trackers. The V. are obtained independently
1

f /%

of the W.. For a Sun observation, V. normalIy is obtained using an ephemeris
1 1

i

routine. For a magnetic field observation, V. is obtained from orbit data and
I

f

a magnetic field routine. For a star observation, V. is obtained from a star

catalog. When an onboard star tracker is employed, identifying the stars

which are observed taxi be a major problem. Star identification ,and all other
i i

operations required in the generation of the W. and V. must be performed
1 1

before passing their data sets to DOAOP.

As noted above, DOAOP requires n _ 2 separate observation vectors at each

time point, t , where attitude is to be computed. Spacecraft sensor systems
r

which actually observe many observations simultaneously are rare. The re-

quirement that the obsetwations actually be simultaneous obviously is eliminated

if the spacecraft's attitude variation is negIigible during the time spanned by

the available set of_bservations. Also, spacecraft such as HEAO-A which
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contain highly accurate gyros can, in effect, obtain simultaneous observations

eventhough the attitude motion during the time spannedby the set of observa-

tions is nonnegiigible. This is accomplishedby using the gyro data to trans-

form the vector components Wi(ti) ; i = i, ... , n into new components

Wi(tr) . Except for transformation errors, the resulting Wi(tr) are the com-
ponentswhich would actually have beenobtained if each observation i hadbeen

made at tr instead of at t i-

Section 2 of this documentpresents the mathematics of the basic attitude de-

termination algorithm implemented in DOAOPo This section primarily is a

repeat of material given in Reference i with some alterations in notation,

mathematical details, and point of view. Section 3 discusses the DOAOProu-

tine, including the auxiliary computations andoperations which have beenim-

plemented to support the basic least-squares algorithm.
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SECTION 2 - LEAST-SQUARES ATTITUDE

DETERMINATION ALGORITHM

2.1 DERIVATION OF THE LEAST-SQUARES ATTITUDE DETERMINATION

ALGORITHM

2.1.1 Development of the Least-Squares Attitude Gain Function g(R)

Let GCI be an inertially fixed reference frame and let B be a body-fixed

frame in the spacecraft. Let R be the unknown 3 by 3 attitude matrix of

frame B relative to frame GCL That is, R transforms vector components

from frame GCI resolution to frame B resolution. The objective is to deter-

mine R at a selected time t It is assumed that observations of n _ 2
r

distinct vectors have been obtained at the single time point t Let the sym-
r

A /%

bol W. denote the observed components relative to frame B. Let V. denote
I I

A

the reference components relative to frame GCI. It is emphasized that W
i

and V. (and all other vectors to be introduced subsequently) are not acutally
I

vectors but 3 × 1 matrices that consist of the components of vectors; this deft-
/% /k

nition of W. and V will not preclude the use of the conventional vector cross
i i

and dot product notation later.

t A

The problem is to devise an algorithm for estimating R from the W. and V..
I 1

A weighted least-squares approach will be taken. The optimal estimate of R

is defined to be the estimate which minimizes the following loss function Z(R) :

n

lie 1 A A 12Z(R) -- ai 11 - R - I (2-1)

where I] It signifies the Euclidearl norm. The a. are optional weighting fac-
l

tors which can be assigned to the individual residuals.

Multiplying out the right side of Equation (2-1) yields three terms, two of which

can be dropped, however, because they do not contain R and hence will not
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affect the value of R which minimizes the loss function. Reversing the sign

of the remaining term then yields a gain function which will be designatedas

g(R):

n

E AT ^g(R} = a.W..R- V.
1 1 1

i=1
(2-2)

where superscript T denotes transposition.

The problem now is to find the R which maximizes g(R) . Before addressing

this problem, however, a slight simplification will be introduced into Equa-

tion (2-2) by eliminating the explicit appearance of the weighting factors a..
1

/%

This could be done by absorbing them into the W. via the introduction of non-
1

unit vectors W..
1

A

W. = a.W. (2-3a)
1 1 1

A

Alternatively, they could be absorbed into the Vo
1

by introducing V. vectors
1

t

V. = a.V. (2-3b)
1 1 1

/% A

Finally, they could be absorbed into both the W. and the V. , e.g.,
1 1

W. =_i w-1 1

V. = _i V.1. I

(2-3c)
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For generality, the following equations will use both nonunit vectors W and
i

V.. This does not, however, make the mathematics inapplicable to the weight-
1

ing techniques shown in Equations (2-3a) and (2-3b). Equation (2-2) thus will

be written as follows:

n

g(R) = . R - V. (2-4)
l I

i=I

2. i. 2 Introduction of the Attitude Vector Y

It is necessary at this point to introduce some of the attitude vector concepts

of Reference i. it is noted that the attitude least-squares problem being dis-

cussed here was posed first in Reference 2 in a slightly different form. (In

Reference 2, the problem was stated from an alibi point of view whereas this

document presents it in an alias form. } Several solutions to the problem later

were summarized in Reference 3, These solutions all involved a direct deter-

mination of the optimal R and were derived using matrix methods. The work

on the attitude least-squares problem in Reference 1 was motivated, at least in

part, by Reference 2. The approach presented in Reference I was quite differ-

ent from those in Reference 3. Reference i did not attack the problem through

matrix methods. Instead, it uitlized a vector-like variable, Y , which will be

defined subsequently. Reference 1 was devoted primarily to developing an al-

gebra for attitude representation using Y and, alternatively, using a similar

variable, Z . The least--squares problem was included primarily as an example

of the application of these techniques.

The quantity Y sometimes is called the Gibbs vector. It is defined as

__ A e
Y = X tan -_ (2-5)
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/%

X and 0 are the parameters of a rotation which would rotate the axes of
A

frame GCI onto those of frame B. The unit vector X lies along the axis of

this rotation. The parameter 8 is the angle of the rotation. The polarity of
/% ___

X is chosen so that 8 has the range 0 _ 0 <y. In the present work Y and
/%

X should not be regarded as vectors per se but as the components of vectors

along the axes of the B or GCI frames. (Since Y and X both lie along the axis

of the rotation, their components along the B frame axes will be identical to

those along the GCI frame axes. )

The relationship between Y

two equations, which define

and R will now be developed. The following
I%

R as a function of X and 0, are well known

expressions:

/%

R =c0I +[1- cO] X °_T- sSX (2-6a)
3x3

The symbols c and s above signify sine and cosine, respectively. I is the

3 x 3 identity matrix. The wavy underbar signifies the usual 3 x 3 skew-

symmetric arrangement of vectors. Letting x 1 , x 2 , x 3 denote the compo-
/%

nents of X , the full form of the third term in Equation (2-6a) thus is

AI0x3 2]sOX = s8 x3 0 - 1 (2-7)

x 2 x 1
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A A T z,,

The expression X o X in Equation (2-6) signifies the outer product of X

with itself. The full form of the second term in Equation (2-6a) thus is

[I - cO]_.._T =[i- oo]

= [ i - ce]

_x 3

2
x I

_ix2

Ix I x 2 x 3 }

XlX 2

2
x 2

XlX 3 x2x 3

(_I

XlX 3

x2x 3

2

x 3

(2-8)

It will be noted at this point that the vector cross and dot products will be indi-

cated in the usual manner in subsequent equations. In particular, the dot prod-
_ _T

uct will be indicated as merely A. B , for example, rather than as A • B .

By utilizing Equation (2-5) and performing some algebra, Equation (2-6b) can

be transformed into

[[ z - _. ?] z + 27. VT _ _} (2-9)
R = [i + _.-_]

Equation (2-9) specifies R as a function solely of Y and thus is a significant

expression.

2. i. 3 Completion of the Derivation

To complete the derivation of the least-squares attitude algorithm of Refer-

ence i, Equation (2-9) is first substituted into Equation (2-4), the least-squares
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gain function expression.

as g(Y). Thus,

Let the resulting Y-dependent function be designated

{

- Eg(Y) = . __
i=I 1 + Y. _}

{[1 - _.?] I +2?. vT _ _}] . V-'.• 1
(2-10)

Some simple manipulations yield

n

_- 1 E {[1-v._Ew .v]
g(Y) = 1 + _. -Y_ i= 1 I z (2-11)

+2[_..-_] [_. v-i] +2_. [_. × V.]}
1 I I I

Equation (2-11) and subsequent equations include product expressions such as

W. • V--_. , which involve vector components along two different coordinate frames.
I i

It is emphasized that no coordinate transformation is to be made before multi-

plying out these products.

The problem now is to determine the Y which maximizes g(Y) . To accom-

plish this, the gradient of g(Y) is formed and this result is set to 0 o If the

resulting equation can be solved for Y , it will establish the Y vectors which

produce the stationary values of g(Y) . To aid in the differentiation, the follow-

formulas are noted:

aY[z+Y'-_] =
-2Y

[I+Y.Y]

(2-12a)

d-f
(2-12b)
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d y] = [ • + [Y W. (2-12c)• • •

d_ i

cl -_- EW. x-_']=w, xV. (2-12d)
d_" 1 1 1 1

For convenience, the present work regards the derivative of a scalar with re-

spect to a vector as being a column vector rather than a row vector. Differ-

entiating Equation (2-11) with the aid of Equations (2-12), setting the result

to zero, and performing some algebraic manipulation yields

0 = -4Y n [[ . ] + [ • Y] [Y. V.] +Yo [W. xV.

[I+Y. 2 i=l 1 1 1

(2-13)
n

+ [I+Y.Y] -Y +[Y. W +W xV
--_ -_2 i i i

E1+Y •Y] i=1

Making a final minor rearrangement now yields

y=
n

i=1 i i I i I I

(2-14)

Except for a few minor alterations in notation, Equation (2-14) is the equation

given on page 18 of Reference I. It also is the relation implemented in DOAOP.

As discussed in Section 3.3, DOAOP solves Equation (2-14) by iteration using

an initial input Y In the numerous runs which have been made with DOAOPI

since its inception, the iteration technique reportedly has never failed to con-

verge.
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2.2 A SIMPLIFIED FORM OF THE LEAST-SQUARESATTITUDE ALGORITHM

A significantly simplified form of Equation (2-14) was pointed out recently by

P. Davenport. A derivation of this new form is presented in this section. The

final equations of the new form are Equations (2-18), (2-22), and (2-26).

Consider first the summation term in the numerator of Equation (2-14). Writing

the summations separately yields

1 1 1
(2-15)

where, for simplicity, the range of the summations is omitted. A simple ma-

nipulation of the first two terms in Equation (2-15) yields

W.. + V.. • + W. xV.
I I i i I

(2-16)

Let the third term in Equation (2-16) be designated as Z"

Z = W.×V.
I 1

(2-17)

and let the first term inside the brackets be designated as B .

i 1 19 "''_ _ "''_
(2-18)

T
The second term inside the brackets in Equation (2-16) is B

B T _ -_ -_T= V. - W. (2-19)
1 I
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SubstitutingEquations (2-17), (2-18), and (2-19) into Equation (2-16)yields

BT] -_ __[B+ .Y+Z (2-20)

This is the new form of the terms inside the summation in the numerator of

Equation (2-14).

It is possible to compute Z directly from B , rather than with Equation (2-17).

To derive the algorithm, let Q be an arbitrary vector and consider the prod-

uct [B T - B] ' Q. Substituting Equations (2-18) and (2-19) into this product

yields

= x xW.] = _. × V--_. xQ
i 1 1 i

=Z ×Q=Z .Q
rx_

(2-21)

Since Q is arbitraw, the result obtained above demonstrates that

-_ B TZ = - B (2-22)

Thus, Z can be computed with Equation (2-22) rather than with Equation (2-17).

For any large number of obsmwations, Equation (2-22) requires fewer numeri-

cal operations than the lengthy summation computations required by Equa-

tion (2-17). Forming the 3 x 1 vector Z from its 3 × 3 skew symmetric

form Z is a minor step.
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The following relation is noted at this point for use in a later paragraph:

o

Trace B = W i V i (2-23)

Equation (2-23) can be developed from the second portion of Equation (2-18)

through use of the following two properties of the trace operator:

1. Trace M = _ Trace M

_=i mXm ¢x=1

where the M are arbitrary square matrices and

2. Trace
P - NmXn n×m

= Trace [N . P]

where N and P are also arbitrary except for dimensions.

The denominator in Equation (2-14) now will be considered. Simple manipula-

tion converts it into

Y. W. xV. +Y • W. • - + W. - V. (2-24)
I I i i i

Inserting Equations (2-17), (2-18), and (2-23) into (2-24) then yields

_ .-m_ T

Y. Z +Y • B- Y +Trace B (2-25)

which is the desired simplified expression for the denominator of Equa-

tion (2-14).
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To summarize, the simplified form of Equation (2-14) is

_= 0.5 [I+V ._'_] [[B+B T] • _+_] (2-26)

Y- Z +Y- * B" Y+TraceB

In a routine which employs Equation (2-26), the matrix B would be computing

using

n

B = W.*
I I

i=l

which was listed earlier as Equation (2-18).

Z then would be computed using

Z =B T -B

which was listed earlier as Equation (2-22).
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SECTION 3 - LEAST-SQUA_S ATTITUDE DETERMINATION

ROUTINE DOAOP

This section discusses the routine DOAOP which is an implementation of the

least-squares attitude determination algorithm described in Section 2. Sec-

tion 3.1 briefly discusses the application of DOAOP in a system which has been

employed for attitude determination studies on HEAO-A. Section 3.2 then

summarizes the main operations which are performed in DOAOP. That por-

tion of DOAOP which actually performs the least-squares attitude computation

is described in Section 3.3. Section 3.4 is a short section which denotes

the computation of Euler angles a, _ _ 5 from the least-squares attitude

matrix R . These Euler angles are computed primarily for the convenience

of the user of the routine. Finally, Section 3.5 discusses the computation of

a preliminary attitude matrix R This R matrix is developed using a two-
O O

observation technique. R is required as an input by that portion of DOAOP
O

which performs the least-squares atti_de computation.

3.1 APPLICATION OF DOAOP IN HEAO-A ATTITUDE DETERMINATION

TEST SYSTEM

To illustrate the application of routine DOAOP as part of a more complete

attitude determination system, Figure 3-i presents a baseline diagram of the

HEAO-A attitude acquisition test system. This system has been used in studies

employing simulated HEAO-A data. In the HEAO-A application, the observa-

/%

tion vectors, W i , which are needed by DOAOP are obtained solely from a star

tracker° The gyro propagation technique is employed to obtain the data set of

simultaneous observation vectors Wi(tr) i = i, °.., n which are needed by

D©AOP at each attitude determination time t The system in Figure 3-1
r

A /%

does not include the capability of weighting the W. or V. vectors.
I I

The two main operations performed by the system shown in Figure 3-1 are

(1) the star identification operation, which is performed through the ACQID
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subsystem and (2) the least-squares attitude computation, which is performed

through the AXES subsystem. As shown in Figure 3-1, DOAOP is called by

AXES. MAIN is the driver routine. The main operations performed by MAIN

are as follows (in sequential order):

1. Initialize parameter values

2. Read NAME LIST

3. Call SPHCAR to compute the unit Sun vector from its right ascension

and declination values, which are input through NAMELIST

4. Read the observed star data set

5. Read the catalog star data set

A

6. Call ACQID to match the observed star vectors W. to the catalog
1

stars and generate the {'_i } and ["_t] dam sets

7. Caii AXES to compute spacecraft at-tiLde

8. Call DELXZ to compute the deviation of the least squares attitude

solution from a reference a_itude

9. Exit

The unit Sun vector computed in SPHCAR is used solely in the star identification

operation. Star identification is not within the scope of this report and thus is

not discussed.

AXES is the driver for DOAOP. EULER, which also is called by AXES, com-

putes the 3-1-3 Euler angles from the attitude matrix, R , generated by

DOAOP. MXV (Figure 3-1) is a minor subroutine which merely multiplies a

3 x 3 matrix by a 3 x i vector. DOAOP itself calls one small subroutine,

CRPR, which calculates the cross product of two vectors. In addition to acting

as a driver in the system shown in Figure 3-i, AXES also computes the mean
Z /%

of the angular errors ¢. between W and IR. V.1 i i
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3.2 SYNOPSIS OF ROUTINE DOAOP

The main operations performed by DOAOP are as follows:

® Compute a preliminary attitude matrix, R
O

observation technique

, using a two-

0

a. Select the two observations, W L , W K , to be employed

b. Use W L , W to compute R, K o

Compute a more accurate attitude matrix, R, using all the ob-

servations Wl, ..., W n

a. Transform the reference vector components, V. , onto an
1

intermediate coordinate frame, B , via U. = R • V
o I o i

b. Compute the attitude vector, Y, relative to frame B ,
0

using the weighted least-squares algorithm discussed in

Section 2

C, Transform -_ into an attitude matrix, P (this matrix still

describes the attitude relative to frame Bo)

de Compute the final attitude matrix, R , with R = P • R
O

3. Compute Euler angles _ , _ , 5 from R

These three computations are discussed in detail in the following subsections.

The description of the computation of R has been placed after the descriptions
O

of the calculation of R and of the Euler angles. This reverse order was chosen

because the least-squares calculation of R is of more present interest than

Also, the discussion of the computation of R isis the computation of R ° o

lengthy.
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3.3 IMPLEMENTATION OF THE LEAST-SQUARES ALGORITHM IN DOAOP

After a preliminary estimate, R , of the spacecraft's attitude matrix, R, is
o

obtained via the method discussed in Section 3.5, a more accurate estimate

of R is computed using the iterative)east-squares algorithm indicated pre-

viously as Equation (2-14}. Figure 3-2 shows the implementation of this algo-

rithm in DOAOP. With a few exceptions, the notation, computations, and flow

on this diagram have been made similar to, or identical with, those of the cod-

ing. It is noted in particular that the symbols SMA , Y-_P , RP , etc. denote

single variables, not products.

In DOAOP, the-_vector used in the computations specifies spacecraft attitude

relative to the coordinate frame defined by the preliminary attitude estimate,

R , rather than relative to the geocentric inertial frame, GCI . To explain
o

this, let B denote the spacecraft body-fixed frame and let B denote the initial
o

estimate of frame B. The geometry is summarized in Figure 3-3.

To specify Y relative to frame B. , it is necessary to transform the frame GCI
O

vector components, V. , into frame B components, U.. This is the transfor-
1 O 1

mation

U. =R .V. ; i=l, ..., n (3-1)
1 O I

shown in block A of Figure 3-2.

Equation (2-5) shows that -_ As -6" when dealing with two coordinate frames

which are congruent° The first estimate of Y therefore is Yo = 0 . Equa-

tion (2-14) shows that the attitude estimation algorithm wiI1 be particularly

3-5



_3

1

0%

_. START )

No

A
i=ITOn

1

I COMPUTATION

OF CONSTANT

SUMMATION
TERMS

Z'= Z WixU 1n B

SMA = )2 W-

i= t

i COMPUTE INPUT

Y FOf_{ FIRST PASS

Y_ _ _ c__
2 • SMA

t1= 1

I ATTITUDE

COMPUTATION

SMB = _._J

SMC i = W I • Y

i = 1 TOn

n

SUM = 2[ Z SMB i . SMC i

i=1

+ SMA +7-Z--_

I÷Y-y
AP -

SUM

n

i=1

Y'P " AP" [7 + E')

I CONVERGENCE

CHECK

E_s-IF-;;If_ IE

2<

I1=11+1 [

_'UPDATE

Y=yP

COMPUTATION OF

ATTITUDE MATRIX

RE LATIVE TO

INTERMEDIATE
FRAME

p = 2_'pTpT

SUM = yP • yp

P _ P - 2 Y'P

• li -'SUMII F

I
SUM _-

1 + SUM

P _ SUM • p

COMPUTATION

A'I-£1TUDE MATRIX

RELATIVE T(

FRAME GCI

RP

R = RP

/ r12

= ARC TAN { -- |

"_r 11 /

_ ARCTAN/'31 _ '32

\r22 ce--r21 so

= ARC TAN (
r13

_. rlt +r12

= p,R °
G

EULER

ANGLE

COMPUTATIONS

Figure 3-2. Weighted Least-Squares Attitude Computation in DOAOP



P0Y
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Figure 3-3. Flow Diagram Illustrating Coordinate

Frames GCI, B , and B
o

simple for the first pass.

mate, Y1 ' will be merely

That is, since Y
o

= 0 , the first new attitude esti-

W.×U.
1 1

Y1 2 E -_Wi • --_U.
1

(3-2)

This is the computation shown in block C of Figure 3-2. In subsequent attitude

computation iterations, the full algorithm, Equation (2-14), must be employed

because, in general, the input Y now will be nonzero.

The blocks on the second and third columns of Figure 3-2 make up the attitude

iteration loop. The main computations here are performed in block D. This

block is an implementation of Equation (2-].4). A check of the equations in

block D will show that they are analytically identical with Equation (2-14) except

that the vector components, _. , of Equation (2-14) are replaced in block D by
1

the transformed components U
i

The variable designated as _ in Figure 3-2 is the input to block C for the latest

iteration pass; -_ here is the at_tude vector on the right-hand side of Equa-

tion (2-14). The term Y-P is the new attitude vector which is computed during
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this pass; YP here is the term on the left-hand side of Equation (2-14). The

program iterates by performing the block D computations repeatedly until con-

vergence is achieved or until the maximum number of passes (1000) has been

made without achieving convergence. The output, _ , which is obtained in

any one pass through block D, serves as the input, -_, for the next pass.

The third column of Figure 3-2 shows the convergence check performed after

each pass through block D. The convergence test employs a parameter EPS

which is the square of the norm of the correction (Y - YP) generated in that

pass. Thus,

EPS : IIY YPI] 2 ...._ = (Y- YP) o (Y- YP) (3-3)

The iteration is considered to have converged whenever EPS becomes less

than 10 -12.

The first step after convergence is to transform the final attitude vector, YP ,

into the corresponding attitude matrix, P . As shown in Figure 3-2, DOAOP

also performs this operation if I000 passes are made without attaining conver-

gence. The YP -* P transformation is shown h_ block F of Figure 3-2. The

equations listed in block F are analytically identical with Equation (2-9).

As noted earlier, P does not specify spacecraft attitude relative to the

GCI frame° Instead, it specifies spacecraft attitude relative to frame B
O

initial attitude estimate.

to frame GCI is needed.

to be

of the

Therefore, a transformation to yield attitude relative

With the aid of Figure 3--3, the transformation is seen

R = P • R (3-4)
O

which is the computation shown in block G of Figure 3-2.
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3.4 COMPUTATIONOF EULER ANGLESIN DOAOP

Before returning, DOAOPcomputes the values of a set of Euler angles _, fl, 6.

These angles provide the routine's user with a subjective understanding of the

spacecraft's attitude. The equations for calculating a, /3, 5 are shown in

block H of Figure 3-2. The variables r.. in this block are the elements of
1]

R in the usual situation of n > 2 , where n is the number of observations.

In the degenerate case of n = 2 , the r.. are the elements of the preliminary
lj

attitude matrix R .
o

A check of the equations given in block H shows that the rotational sequence

, 6 , B, when going from frame GCI to frame B, is as follows.

Figure 3-4. Flow Diagram Showing Euler Angles 0_, fl, 6

Figure 3-5 illustrates the actual geometry. The validity of this interpretation

of a, fl, 5 can be demonstrated by using Figure 3-4 to develop the matrix

expression R (a, fl, 5)

R4_

rii

r21

r31

r12 r13

r22 r23

r32 r33

= X E5 ITEm]
Y

(3-5a)
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Multiplying out yields

a

c_c6

sc_s_

-c _ s 5c_

s_c5

cSs_

c 5c_

(3-5b)

Substitution of these rij (_, /g, 5 , ) expressions into the right-hand sides of

the equations in block H will reduce these expressions to identities _ =

6 = 5 , and fl = fl , thereby verifying the above interpretation of _, 5 , and ft.

The above Euler angles, _, fl, 5, are particularly convenient for spacecraft

which are spinning about their x-axis, because _ and 5 then are the right

ascension and declination, respectively, of the spLa axis, and fl defines the

phase of the spacecraft in its spin cycle. These angles, however, are not

especially suited for the spinning mode of spacecraft such as HEAO-A which

spin about their z-axis rather than about their x-axis.

3.5 PRELIMINARY ATTITUDE COMPUTATION IN DOAOP

As stated previously, the least-squares attitude determination algorithm used

in DOAOP requires a preliminary attitude matrix, R ° , as an input. The com-

putation of R is discussed in this section.
o

DOAOP computes R with a two-star attitude determination algorithm. The
o

computation involves two distinct steps:

. From the total of n available observations, select the two which

wiI1 be used

Calculate R using these two observations
O

o

These two operations are discussed in the following subsections.
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3.5.1 Selection of the Two Observations

The selection of the two observations will be considered first. The algorithm

employed in DOAOP is summarized in Figure 3-6. The selection of the first

observation (denoted here and in the coding as observation L) is shown in the

first column of this figure. Perusal of this column shows that the first obser-

vation selected is the one whose reference vector V has the longest length;

that is, the observation which is to be weighted the heaviest in the weighted

least-squares attitude computation.

In most applications of DOAOP, the observations are not weighted. In this

case, all the V. nominally have unit lengths. At first glance, Figure 3-6
1

appears to indicate that the first vector in the block, V. , will be selected.
1

However, this is not what actually happens. Instead, the unit vectors, V. ,
1

which are passed to DOAOP will usually differ slightly from unity as a result

of numerical effects. In this situation, DOAOP will choose the V whose length

accidently is the longest. For example, in a test run using the system shown

in Figure 3-1, 25 observations (all of which supposedly had V. vectors of unit
1

length) were passed to DOAOP. The V L which was picked by the routine was

the 16th vector in the set. Supplementary computations verified.that the length

of this vector was slightly greater than unity and that it was longer than that of

any other V. in the set.

The selection of the second observation (denoted here and in the coding as ob-

servation K) is shown in the second colu_rm of Figure 3-6. When making this

selection, the program computes the cosine CSL i of each of the angles _Li

between V L and the remaining n - i reference vectors V.I ° Observation K

is selected to be the one whose cosine_ CSL K , has the smallest algebraic

value. In other words, V K is the vector whose separation angle from V L

is the closest to ¢ro For example, in the run noted in the previous paragraph,

the separation angle between V-_L and V% was 174.25 °.
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K=j

Figure 3-6. Algorithm for Selecting the Two Observations

for the Preliminal 7 Attitude Computation
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Selection of the V K closest to rr radians from V L apparently is an unintended

imperfection in DOAOP. It is well known that the two-vector technique for

computing attitude is most accurate if the two vectors are rr/2 radians apart.

Attitude cannot be computed at all if the two vectors are separated by _r radians.

3.5.2 Two-Observation Attitude Determination Algorithm

Having selected V% and V% and having obtained the corresponding observa-

tion vectors W L and W K , the next step is to compute the preliminary attitude

matrix, R The R computations which are used in DOAOP are summarized
O o

in Figure 3-7. For simplicity, most of the straightforward operations of

normalizing nommit vectors and/or of computing their lengths have been ex-

cluded from Figure 3-7. Most of the symbols in Figure 3-7, particularly UP i ,

are similar to or identical with those of the coding. The vectors _. in
1

Figure 3-7 are not the same vectors as the U. used in Section 3.3.

This discussion takes the point of view that the algorithm for computing the

preliminary attitude matrix, R , can be divided logically into steps A, B, C,
o

and D, as shown in Figure 3-7. Step D is regarded as the basic attitude de-

termination algorithm. The function of steps A, B, and C is merely to gen-
A

crate the vectors UP. , _. ; j = 1, 2, 3) which are used as inputs to block D.
J J

/% /%

Disregarding the exact nature of the UP. , U. vectors which are employed as
J J

input to block D, the algorithm in this block is a well-known and commonly used

technique for computing attitude from a pair of observation vectors. It appar-

ently was first reported in Reference 4.

A

The UPj are a new set of observation vectors. They are still resolved on the
/%

spacecraft body frame B. Similarly, the U. are a new set Of reference vec-
J

tots; they still are resolved on the GCI frame. Unlike the actual observation

and reference vector pairs, W L , W K ; V L , VK ) the three UP vectors are
/N /% /% J

orthonomal, as are the three U. vectors° That is) [UP. UP _P ] is an
1 2 3

/% z_x J /%

orthogonal matrLx, as is [U[ U 2 U3] . The algorithm used in block D requires
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matrices which are orthogonal, and this is the reason for transforming to the
fx _'x

UP. and U. vectors.
J J

As is shown in block C, U 3 and UP 3 are computed by forming the crossprod-
/% /% /% /% /% /%

ucts of U 1 , U 2 and of UP 1 , UP 2 , respectively. The vectors U 1 , U2 ,
A A

UP 1 , and UP 2 are obtained by performing the orthonormalizing operations

shown in blocks A andBonV K , V L, W K, W L

There is a continuum of ways in which VK , V L , W K, W L could betrans-
/% /%

formed into orthonormal triads U. and UP.. As will be discussed briefly
J J

later, the techmque used in DOAOP is the optimal way; that is, the overall al-

gorithm shown in Figure 3-7 maximizes the gain function g(R) of Equation (2-4)

in the two vector (n = 2) case and hence is a weighted least-squares approach.

The remainder of this subsection will discuss the portion of the algorithm de-

noted here as step D. The orthonormalizing operations, steps A and B, will

be discussed in the following subsection.

A

As noted above, the UP. are transformed observation vectors which are
J

resolved on frame B. Similarly, the U. are the corresponding transformed
J

/%

reference vectors, resolved on frame GCI. For any single pair of vectors, UP.
A ]

and U. , there is an equation of the form
J

Y

•.. ,,:_-

UP. = R U. + ¢.
j o j j

3 xl 3x3 3xl (3-6)

where R is the unknown attitude matrix, and ¢_. is a_. unknown error vector
o j

which results mainly from inaccuracy in the observation/computation of U_P..
J

Since j = 1, 2, 3 , there are three equations of this form. They cam be corn-

bined into the following matrix format.

] __.[uPl. uP2 = Ro" O9,U3] + ] (3-7)
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Omitting the error matrix and solving for R yields
O

[¢Pl ^ ^ [u1 A ^ -IRo = UP 2 UP 3 ] " U 2 U 3 ] (3-8)

The matrices on the right-hand side of Equation (3-8) are orthogonal. The

equation can thus be simplified to

[U_P1 A 3] A 3]TRo = UP2 U_p " [U1 U2 _ (3-9)

which is the algorithm shown in block D of Figure 3-7.

Analytically, it is possible to use W L , W K , V L , V K directly in the attitude

computation without an intermediate generation of the orthonormal vector

triads, U i , UP.l " This approach employs

Ro = [_K _L WM ] " [V'K _L _M ]-1 (3-10)

which is of the same form as Equation (3-8)° The new vectors W M and V M

are obtained with the simple block C approach

W M = W K x W I_ (3-11a)

V M =V K X V L (3-11b)

or else they are an independent vector pair selected from the remaining n - 2

vector pairs , V . With this approach, each W. must be the same
_ ]

length as the corresponding V. o
]

Teclmiques which transform to orthonormal vector triads are usuaily considered

to be superior to the approach in Equation (3-10) which works directly with
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nonorthonormal triads. Oneof the disadvantagesof the techniquein Equa-

tion(3-10) is that errors in W K, W L, VK, V L tend to yield an R whicho

is not orthogonal. To be more specific, it can be shown that Equation (3-10)

cannot yield an orthogonal Ro unless the angle _bV between V% and V%

is identical with the angle _ between W L and W K ; errors in determining

WL WK = SV fromVL, V , , , however, can prevent the condition _bwK

being encountered exactly. Methods which transform to orthonormal triads

before computing R are certain to generate an R which is orthogonal.
O O

3.5.3 Orthogonalization of the Observation and Reference Vectors

In DOAOP, the orthogonalization operation is divided into two steps (Figure 3-7)

In step A, V K , V L , W K , and W L are transformed into intermediate vectors

U_, U_, UPS, and UP_ • In general, these four intermediate vectors all will

have nonunit length. However, U[ is perpendicular to and UP'I is per-

pendicular to UP_ . In step B, these intermediate vectors U'I, U_ ,UP_ ,

--" t 6"P1. O'P2are transformed into the final vectors , , , , which are
UP_ 1

employed to compute R in steps C and D. As noted earlier, the four final
O

/', /% A

vectors are of unit length, with U 1 perpendicular to U 2 , and UP ! perpendic-
A

Ldar to U P2 Step B is merely am implementation of the usual Gram-Schmidt

orthonormalization algorithm.

Steps A and B are redundant. That is, it is possible analytically to omit step B;

this would require merely normalizing U_ , U_ , UP_ , and UP_--a trivial

operation whieh is performed anyway. Alternatively, step A could be omitted

instead; this procedure would invotve applying the Gram-Sehmidt operation

first to V L , V K and then, independently, to W L , W K .

The main orthogonalization step is step A. An analysis summarized in Refer-

ence 5, pages 23 through 26, indicated that the algorithm formed by steps A, C,

and D constitutes an optimal weighted least-squares solution to the attitude de-

termination problem in the case of two observation vectors. Therefore, in the
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least-squares sense, the step A approach apparently is the best of all possible

algorithms which could be used to transform V K , V L , W K , W into anL
A /%

orthonormal observation vector pair UP_ _ UP_ , and an orthonormal reference

vector pair U'I,[J2' . The Gram-Schmidt operation, step B, has been included

in DOAOP only to trim out any nonorthogonality which may be induced in the

step A results by numerical inaccuracies.

3.5.3.1 Gram-Schmidt Orthonormalization Step

The Gram-Schmidt step, step B, will be discussed before step A. Only the

transformation from U_ , 1_, to U1, U2 in step B will be described specifically.2

The other transformation in step B, from UP_ , UP_ to UP 1 , UP 2 , is mathe-

matically identical with this one.

The first operation which is performed on U[ , U_ in step B is to establish
/% /%

their lengths U_ , U_ , and their corresponding unit vectors U'I, U'2 " These

are near-trivial computations which are not shown in Figure 3-7.

DOAOP next determines which vector, U 1 or , is the longer. The longer

of the two vectors is unaltered. That is, the projection operation which the

Gram-Schmidt procedure entails is performed on the shorter vector. For ex-

ample, if U'I > U_ , the program uses

/% /%

U 1 = U_ (3-12)

A

In this case, U' is projected to yield a new vector, U , which is perpendicular
2 2

A
!

to U 1 o The geometry is illustrated in Fignare 3-8, which shows that

/\ _ /N /%. /%

U 2' = U2 + (U_" U')2 U1 (3-13)
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U1 = _1

AI ^ /

U1 (U1 " U2)

Figure 3-8. Gram-Schmidt Orthonormalization

Thus,

A A

u2 --_, -(_' . u_)_ (_-_)2 1

which is the computation shown in block B2 of Figure 3-7. The final operation

is to normalize U_ by the usual method

U 2 (3-15)

' _ U' the computations are identical with those noted above except thatIf U2 I'

the 1 and 2 subscripts are reversed.

3.5.3.2 Main Orthogonalization Step

The discussion of the main orthogonalization step, step A, will not delve into

its least-squares optimality. Reference 5 presents a study which evidently

demonstrates that it does constitute a weighted least-squares solution to the

two-observation attitude determination problem when used in conjunction _4th

3-20



' and UP_ ac-steps C and D. The discussion herein shows simply that (1) U 1

tually are orthogonal to U_ and UP_ , respectively, as desired and that (2) the

step A orthogonalization operation does not induce any inherent error into the

attitude matrix, R , to be computed in step D.
O

The analysis herein will start with the following transformation equations, which

are a generalization of those shown in block A3 of Figure 3-7:

= XlV K + x2V L (3-16a)

U'_ = YlVK + Y2VL (3-16b)

UPk = PlWK + P2WL (3-16c)

UP_ = qlWK + q2WL (3-16d)

V K "It is evident that U_ and U will be in the plane formed by and V L , to

be called the V-plane. Similarly, UP 1 and UP_ will be in the plane formed by

W K and W L to be called the W-plane. The eight coefficients x, ..., q2 are

to be chosen to satisfy the constraints of the problem. This must be done in

such a way that the step A algorithm is generated exactly.

The constraints which the transformation must satisfy are of two types. First,

because _I is supposed to be perpendicular to U' , and UP' is supposed2 1

to be perpendictflar to UP_ , it is necessa, i_y that

u[ =o (3-17a)

upk uph = 0 (3-ZTb)
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Introducing Equations (3-16) into Equation (3-17) yields

Xl Yl VK + [xlY2 + YlX2]V'K " VL + x2Y2 V2L=0 (3-18a)

2 qlP2]WK " WL +p2q2 w2=0 (3-18b)Plql w K + [Plq2 +

which are the first constraint equations that must be satisfied by the transfor-

mation. The parameters v L , v K , w L , w K above signify the lengths of

V L, VK, W L, andW K respectively.

The present work regards the constraint on Equations (3-16) to be that the

transformation must not induce an inherent error into the resulting computed

attitude R . That is, when the vectors V L , V K , W L , W are errorfree,o K

the resulting solution for R obtained with the Figure 3-7 approach should be
o

analytically equivalent to that obtained by the more straightforward method

(Equations (3-10) and (3-11)), which does not employ orthogonalization and which

is analytically perfect in the errorfree VL---W K case. In this context,

VL---W K can. be considered errorfree if

A A A /N

V K " V L =W K • W L (3-19)

because this enables

by the same rotation

A A /% /%

V K and V L to be rotated onto W K and W L , respectively,

[WKWL ] : Ro [_/K QL ] (3-20)

(For the remainder of this document itis convenient to take an alibipoint of

view and regard R as a rotation. The various vectors can be regarded best
.0
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as actual vectors or as vector components on GCI frame. ) When Equation (3-19)

is satisfied, the transformations in Equations (3-16) should be such that U'1
/% I% ]n,

and U_ are rotated onto UP_ and UP_ respectively bythis same rotation

R t

O

/k

^ ^ ^ (3

Figure 3-9 is useful for comprehending the geometry of the rotation. R cano

be regarded as being decomposed nonuniquely into two sequential parts: (1) a

rotation which rotates the V-plane onto the W-plane, and (2) an azimuth rotation

about the normal _W to the W-plane. It is certain that Equations (3-16), when

used in conjunction with block D, wLll still rotate the V-plane onto the W-plane
/% /% /% /%

as desired, because U_ , U_ and UP_ , UP'z lie on the V and W planes,/% re-A
t

spectively° Use of coefficients x 1, . .., q2 which yield vectors UP[, ..., U 2

that do not satisfy Equation (3-21), however, would result in the aximuth angle

about % being established incorrectly.

The constraint imposed by the requirement discussed above now will be placed

in a usable mathematical form. First, let Equations (3-16) be manipulated into

the form:

Xl VK Yl VK

U 1 U 2

x2 VL Y2 VL

U 1 U 2

(3-22a)

: _WK WL ]

P I WK qi WK

UP 1 UP 2

P2 WL q2 WL

UP 2 UP 2

(3-22b)
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where

A A 2 .5
2 2 VKV LV K V L +x22vL] (3-23a)U 1 = Ex I v K + 2x I x 2

^ A 2 2 5

U2 = Ey21 V2K+ 2Yl Y2 VK VL VK" VL + Y2 VL_" (3-23b)

A ^ 2 2 5

2 WK WL WK WL + P2 WL]"UP 1 = _p21 w K+ 2PlP 2
(3-23c)

A ^ 2 2 .5

UP2 = _q21 w 2 + 2q I q2 WK WL WK o WL+q2 WL] (3-23d)

Now assume the validity of Equation (3-19) and substitute Equation (3-20) into

Equation (3-22b), and Equations (3-22a and b) into Equation (3-21). From this

result, it can be shown that x 1, ..., q2 must be chosen such that the following

relations are satisfied

Xl VK Pl WK- (3-24a)
U UP

1 1

x2 VL P2 WL

U 1 UP 1

(3-24b)

Yl VK ql WK

U 2 UP 2

(3-24c)

Y2 VL q2 WL (3-24d)

U 2 UP 2
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Equations (3-24) constitute a secondset of constraint equations. It shouldbe

noted, however, that this set is not entirely independentof the two constraints

specified by Equations (3-18). In fact, geometrical considerations basedon Fig-

ure 3-9 indicate that only oneof the aboverelations is fully independent. Equa-

tions (3-24) are cumbersomedue to the complicated expressions for the UP.
1

and U. terms. Two simpler equationsare obtained by dividing Equation (3-24a)t
by Equation (3-24b) and Equation (3-24c) by Equation (3-24d).

Xl VK Pl WK

x2 VL P2WL
(3-25a)

Yl VK ql WK

Y2 VL q2 WL
(3-25b)

Also, combining Equation (3-25a) and Equation (3-25b) yields the requirement

xlY 2 P2ql = x2Y 1Plq2 (3-26)

The next step is to separate Xl, ..., q2 into (i) a set of independent param-

eters whose values can be selected arbitrarily and (2) a set of dependent pa-

rameters whose values are to be established via constraint equations. Using

Figure 3-9 as a guide and referring back to Equations (3-16), the development

is as follows:

1.

,

U 1 can be placed anywhere on the V-plane. Hence, x 1 and x 2

are arbitrary except that both cannot be zero

U_ must be orthogonal to U' Thus one1 " , of the coefficients, (e. g. ,

y2 ) of Equation (3-16b) can be given any arbitrary nonzero value and

the other, Yl ' should be established by the orthogonality constraint

equations.
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o

®

UP_ is constrained to lie at the proper azimuth angle in the

W-plane. This means that one of the parameters, e.g., Pl ' of

Equation (3-16c) must be established through a constraint equa-

tion. The value of the other, P2 ' cannot be zero, but otherwise

is arbitrary except for sign° This sign restriction is necessary

to guarantee that UP i can lie in that half of the W-plane which is

required by the rotation.

U-P_ must be orthogonal to U-P' 1 . Hence, the value of one of the

coefficients9 e.g., q2 ' of Equation (3-16d)should be established

through the orthogonality constraint equations. The value of the

other, ql ' cannot be zero but otherwise is arbitrary except for

sign. This sign restriction is necessary to guarantee that UP'
2

can lie in that half of the W-plane which is required by the rotation.

The values of the arbitrary parameters, x 1 , x 2 _ Y2 ' P2 ' and ql ' now will

be selected. Keeping in mind that the present derivation is intended to yield the

step A algorithm implemented in DOAOP, the choices are

Xl = q2 x2 = -1 Y2 = 1 P2 = -CrlYl ql = or2 (3-27)

where gl = +I

(Y2 =+i

Substituting Equations (3-27) into (3-16) and making some minor notational

changes (deleting the subscripts and replacing q by x) yields

U' = xV K - V L1
(3-28a)
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U' = yV K + V L2 (3-28b)

= pW K - cr yW LUP_ 1 (3-28c)

UP_ = o'2W K + xW L (3-28d)

The orthogonality constraint equations, Equations (3-18), now are

_

xy v K + Ix-y] VK. VL- v 2 =0 (3-29a)

per2 w K + [px - o'1o'2 y] W K W L - (_lxY w 2 = 0 (3-29b)

and Equations (3-24) through (3-26) are

x v K p w K

U UP
1 1

(3-30a)

VL (_i y WL

U 1 UP 1
(3-30b)

Y VK °'2 WK

U 2 UP 2
(3-30c)

v L x W L

U 2 UP 2

(3-30d)
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x vK a1 pwK

vL ywL
(3-31a)

Y v K CY2 w K

v L x w L
(3-31b)

p = cr _ (3-32)
1 2

The problem now is to utilize the above equations to establish x , y , p , and

the signs of crI and cy2 .

Equation (3-32) shows that p must be +i or -i. Equation (3-30d) shows that

x >0. Equation (3-30a) shows that x and p must have the same sign. Therefore,

p = +1.

It now follows from Equation (3-32) that o 1 and if2 must have the same sign.

=(7 =±I.
Therefore, the following work will utilize _ = _1 2

Equations (3-29) now vAll be manipulated to obtain separate quadratic equations

inxandy. After inserting p =+1 and _ =_1 =_2 ' the result is

2
fx - ax-b =0 (3-33a)

2
fy + ay-b =0 (3-33b)

where

f:vK2 _K WL ÷ crw2L%" _L (3-34a)

2 2 2 2 _ (3-34b= V -Wa c_ _w L L K VK j
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b = v L W K • W L w K " (3-34c)

The unorthodox symbols f , a , b above were taken from the coding. Equa-

tions (3-33) can be solved for x and y

1 [a +s ] (3-35a)
x=_

y = _f[-a -+ s] (3-35b)

where

s =v_a2+ 4bf (3-35c)

Eq_mtioms (3-31a or b) show that

w K v L
xy - (3-36)

w L v K

Because x > 0 , Equation (3-36) shows that y > 0 .

Equations (3-35a and b) now will be employed to form xy . If it is assumed

that the same sign is used with the s term in both equations, the result is

2 -_ . W L ÷0"w KV K . Vb VL WK L
(3-37)

xy r_ _f 2-_
v KW K * W L +O'w L V K o V L
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The use of opposite signs with the s term in the two equations doesnot yield

a result that reduces to anything simple, and thus it is evidently not acceptable.
IN /% A I%

Assuming V K • Y L = WK " WL enables Equation (3-37) to be manipulated into

the form

w Kv L Iv Lw L +w Kv K ff]

xy = WL VK iv L WL (y + VK WK ] (3-38)

Comparison of Equations (3-36) and (3-38) shows that cr = +1

Use of o" = +1 in Equations (3-34) yields

is required.

WK WL w2--_ _L (3-39a)f = v 2 --_ ___ + V Ko Q

2 2 2 2
a=w Lv L-w Kv K (3-39b)

b=VL2 WK • W L +w KV K . VL (3-39c)

which are the relations implemented in DOAOP (step AI of Figure 3-7). Also,

use of cr = p = +i in Equations (3-28) yields

U_. = x V K - V L (3-40a)

U_ = y V K + V L
(3-40b)

=W - yWUP[ K L 3--40c)
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upS=% +aWL (3-40d)

which are the relations implemented in DOAOP (step A3 of Figure 3-7).

The only remaining problem is to determine the sign to be employed with the

s terms in Equations (3-35). It was noted earlier that x > 0 and y > 0 .

Equations (3-39a and c) show that f and b can be either positive or negative,

depending on the separation angles _bV and _bw . However, it is certain that

@V _ @W and therefore f and b normally will have the same sign. Thus,

f b > 0. From Equation (3-35c) it can be seen that s > [a I • To satisfy the

x >0 , y >0 requirement, it thus is required that

X _

2_[a+s] if f>0
_-_[a- s] if f<0

and (3-41)

y= I_f[-a+s] if f>O

[_f I-a-s] if f<O

Equations (3-41) are identical with those shown in step A2 of Figure 3-7.

The study of the step A operation now is completed. The work verifies that the

algorithm does produce two orthogonal pairs of vectors without inducing inherent

errors in the attitude R , to be computed in steps C and D. As noted earlier,
O

no attempt was made here to verify that the resulting R will be the weighted
O

least-squares solution as was claimed in Reference 5. Generating a weighted

least-squares solution depends on the proper selection of the values of the
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parameters x1 , x2 , Y2 ' P2 ' ql " The current study regarded the values of

these parameters as arbitrary and selected them for concurrence with the values

used in the actual program.

The step A algorithm blows up if f = 0 . The f = 0 condition occurs when

• VK=the vector pairs already are orthogonal; that is, when V L 0 and

W L • W K = 0 . Singularity at this condition is unfortunate, since it is the op-

timal condition for attitude determination. If step A is employed in a revised

version of DOAOP, it would be desirable to bypass the step whenever this con-

dition is encountered or approached.
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APPENDIX A- THE q-METHOD: A NEW LEAST-SQUARES
ATTITUDE DETERMINATION ALGORITHM

A. i INTRODUCTION

The distinctive feature of the attitude determination algorithm which is imple-

mented in DOAOP is the use of the vector-like variable Y to specify attitude.

is the attitude state variable used in deriving the algorithm, and it is the

quantity which is computed directly by the algorithm° For this reason, Ap-

pendix A refers to this technique as the Y-method.

The Y-method is not the only possible algorithm for solving the least-squares

attitude determination problem. References 3 and 5, for example, discuss

R-methods, presenting algorithms which employ the attitude matrix R in much

the same way that the Y-method uses the attitude vector Y o In addition, a new

least-squares algorithm which employs the attitude quaternion q has been

devised recently by P. Davenport. After a period of simulation testing, it was

incorporated into the HEAO attitude support system for operational use. This

new method is called the q-method in Appendix A.

The purpose of this appendix is to describe the q-method. Most of the infor-

mation presented is either based on or taken almost directly from unpublished

material provided by P. Davenport

A.2 SYNOPSIS OF THE q-METHOD

This subsection summarizes the main features of the q-method and provides a

first look at the implementation of the method in a computer routine. Subsequent

subsections present a derivation of the algorithm and discuss its mathematics

in detail.
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The two main operations which are performed in a computer implementation

of the q-method are as follows:

1. Computation of the elements of the symmetric 4 x 4 matrix, which

is designated in this appendix as matrix K

2. Computation of the normalized eigenvector ql which pertains to

the largest positive eigenvalue, X1 , of K

91 is the optimal attitude estimate; that is, the attitude quaternion which mini-

mizes the weighted least-squares loss function.

The algorithm for computing K is as follows:

n

1
3x 3 i=1

2o s=BT+B

-_ B T3(a) Z = - B
rx_

(b)

4.

5.

Obtain Z from the 3 × 3 skew symmetric matrix Z

cr = Trace B

4x4

L 3x3 /

Many algorithms exist for solving the eigenvector problem after K is con_-

puted. As noted earlier, only the eigenvector, 91 , which is associated with

the largest eigenval.ue, X1 , of K is needed. The other three eigenvectors q2 '
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q3 ' q4 ' are not required, nor are any of the four eigenvalues. The so-called

power method or matrix iteration approach is one technique for computing ql '

and the analysis in this Appendix on the problem of extracting ql from K

is devoted entirely to the power method. The power method is a well-known

technique for computing the largest eigenvalue and its eigenvector. It is de-

scribed in References 6 through 9 and in most texts on vibrations.

Because ql is the only quantity which must be established in the present ap-

lication, the power method here can consist merely of sequential passes p

through the equation

"qP = K' _p-1 (A-l)

The operation is continued until a convergence criteria is satisfied or until a

specified number of passes has been made without attaining convergence. The

significance of the prime on K in Equation (A-I) will be discussed later. The

input q for any pass is the normalized output of the preceding pass.

Except for one special situation that can be ignored here (namely, when the

--O

a priori input q is orthogonal to 91), the technique discussed above will

converge to ql if Ik I I > ]k21, IX31 , IX41 • (Note that the eigenvalues are

numbered such that k I _ k 2 _ k 3 _ k4 " ) It is shown later that the condition

Ik I [ > Ix31 _ Ik21 will always be encountered. This later work shows that

Ik41 _ [k3I _ Ik2I and, more significantly, that Ik II _" lk41 • The condition

IX1 I = [k41 will be encountered if and only if (1) there are only two star ob-

servations, or (2) there are more than two observations, but they all must be

in a common plane. Convergence will not occur if Ikll =Ik41 Also, con-

vergence will be very slow if the ratio I k4/kll is close to its upper limit of

unity. A modification to the basic power method to hm_dle this potential
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convergence problem is therefore necessary. A simple technique for allevia-

ting the convergence problem is to use the following matrix K' rather than K

K' = K - sl

where s is a suitably chosen negative constant. It can be shown that the term

B

-sI will (1) shift all the eigenvalues of K by s , (k k = Xk s) thereby assur-

ing convergence and improving the convergence rate and (2) will not alter the

eigenvectors.

For a 4 × 4 matrix, the convergence characteristics of the power method can

be shown to be determined by the transient responses of three error modes.

The optimal value s* of s is normally considered to be the value which maxi-

mizes the speed of response of the slowest of these modes. It is possible to

prove that this s* is

1
s* = _ IX 2 + k 4] (A-2)

Equation (A-2) is given tn References 7 and I0. It shifts the eigenvalues to

the pointwhere Ik_l = Ik_I •

Determination of s* presents a difficulty because )'2 and X4 are not known

a priori. An exact analytic solution for s* , however, can be generated in the

current application. The steps in this algorithm are as follows:

I. Compute C -- BTB

2. Compute the coefficients of the cubic polynomial in 7 formed by

expanding Det [C-) _I] _ 0
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3. Obtain the middle eigenvalue, 72 , of C with the exact analytic

solution of the above polynomial

4. s* = -v_2

The details of steps 2 and 3 are given in Section A. 5.3.3.

Suboptimal algorithms for s can also be employed. One approach uses

n w. n

E Es =-k • V. =-k w iv. (A-3)
V. I 1 1i=l I i=l

where w. and v. are the lengths of W. and V., yespectively, and k is a
i i i I

selected constant. Two separate analytical studies have indicated the optimum

value of k to be 1/3 and 1/2, respectively. In the case in which the vectors

are unweighted (of unit lengths), Equation (A-3) reduces to

s = -k n (A-4)

The eigenvalue shifting technique noted above is not the only approach for as-

suring or accelerating convergence. One simple method which can be used to

supplement it consists merely of raising K' to a selected power, m , prior

to performing the power method iterations. This method will accelerate the

convergence rate without altering the final solution ql

A.3 DERIVATION OF THE q-METHOD ALGORITHM

A. 3. I Derivation of the Least-Squares Gain Equation as a Function of

The derivation starts with the weighted least-squares gain function which was

listed earlier as Equation (2-4)

n

---T -_g(R) = W. • R " V.
1 1

i=l

(A-5)
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The following 3 × n matrices will be employed:
J

w: (A-6a)

V = [_'1 ---_n ] (A-6b)

By forming the n × n matrix W T . R • V and multiplying it out in terms of the

"W. and _'. , it can be demonstrated that Equation (A-5) can be written as
1 1

g(R) = Trace [wTR V] (A-7)

Using a property of the trace operator which was listed in Section 2.2, Equa-

tion (A-7) can be rearranged into

g(R) = Trace [R V W T] (A-8)

The following 3 x 3 matrix B now will be introduced

n

vT E--_ --_TB=W- = W..V.
1 1

i=1
(A-9)

B (above) is the same matrix B which was used in Section 2.2. Substituting

Equation (A-9) into (A-8) yields

T
g(R) = Trace R B (A-IO)
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The next step is to introduce the 4 x 1 column vector -_ which consists of the

Euler symmetric parameters.

4xl

3 1

_Ixl

IAel
= X s_-_

(A-I1)

henceforth will be referred to as the attitude quaternion. It specifies the

orientation of frame B relative to frame GCI. The terms X and e are the

rotation parameters which were defined in Section 2. i. 2.

Substitution of Equation (A-II) into Equation (2-6b) enables R to be written

as a function of Q and q :

R=[ - • I+2Q. -2qQ (A-12)

Equation (A-12) is a well-known relation.

Substitute Equation (A-12) into (A-10), and let the resulting gain function be

designated g(q) . A few manipulations yield

g(Cl) : Eq2 --Q--Q](_ + 2 Trace [-_-_T, B T] _ 2q Trace [Q---_.B T] (A-i3)

where, for simplici_, the following new variable cr has been introduced

n

(_ = Trace B = W. o V (A-14)
i i

i=i

The second portion of Equation (A-14) was presented earlier as Equation (2-23).
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The next step is to simplify the secondand third terms on the right side of

Equation (A-13). Working first on the secondterm yields

2 Trace [_-_T BT]=2Trace [Q T- BT -_]

2 _T B T -_ QT= • .Q = • S.Q

(A-15)

where

S=B+B T (A-16)

The third term on the right side of Equation (A-13) is more difficult.

pressing Trace [Q'- B T] in scalar form, it can be shown that

By ex-

[-_ B T] Q-_Trace .... Z (A-17)

where

 b12 b21 

(A-18)

The b scalars above are the elements of B . To identify the vector designated

Z , let its skew symmetric form Z be writ±en out in full

Z=

0
b21 - b12

b12 .ob21 0 b32 - b23

b13 - b31 b23 - b32

b31 - b13

0

(A-19)
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Equation (A-19) shows that

--_ B TZ = - B (A-20)

Comparison of Equation (A-20) with Equation (2-22) shows that the vector -_

introduced in Equation (A-17) is the same vector Z employed in Section 2.2.

That is

n

Z = ×

i=l

(A-21)

Next, substitute Equations (A-15) and (A-17) into (A-13)

q2 _ _g(_) =[- -_.5_]cr+-_T S -Q +2q Z -Q (A-22)

A simple rearrangement yields

g(q) =IQ q ....
(A-23)

thus

_T
g(q) = q " K. (A-24a)
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where

s _- I_]:]K = I _-T (A-24b)4X4

Equations (A-24) specify the least-squares gain criteria as a function of the

attitude quaternion _. The problem of solving this expression to obtain an

algorithm for the optimal attitude estimate is considered in the following sub-

sections. Equation (A-24a) is a very convenient form, since it is a quadratic

function of _. The 4 x 4 matrix K is symmetric and its elements are con-

staa_:s. The set of equations which are needed to establish the elements of K

are Equations (A-9), (A-14), (A-16), and (A-20).

Some general information about K and its eigenvalues and eigenvectors can

be presented at this point. Let the eigenvalues of K be designated as k 1 ,

k 2 , k 3 , k 4. Since K= K T, all k k will be real (Reference 11, Theorem 4.6).

For convenience, it is assumed henceforth that the k k are ordered such that

kl _)_2 _k3 _X4 "

Since K K T
= , a set of four orthonormai eigenvectors (designated here 91 ...,

94 ) can be found for K (Reference 11, Theorem 4.7); and K can be diago-

nalized as follows (Reference 11, Corollary 4.8)

QrA = K Q (A-25a)

where

A = Diag(k 1, k2, k3, k4) (A-25b)
4×4
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and

Q = I-q1 q2 q3 q4 ]
4x4

(A-25c)

Using Equation (A-14), (A-16), and (A-24), it can be shown that

Trace K = 0 (A-26)

From this, it follows (Equation (A-25) and Reference 11, Corollary 4.3) that

kl+k 2 +X 3 +)k4=0 (A-27)

Because all k k cannot be zero, it is certain therefore that )_I > 0 and )_4 < 0

and thus that K is indefinite.

A. 3.2 Determination of the Least-Squares Attitude Solution

This subsection considers the problem of determining the quaternion _ which

maximizes the least-squares gain function

_T
g(q) =q - K. _ (A-28)

where K is a real, symmetric matrix;

T
K = K (A-29)

and -q is subject to the constraint

_T _
q . q=l (A-30)
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The constraint can be handled by the Lagrange multiplier approach.

we seek to maximize

That is,

_Tg'(q) = q . K. q - k [ q - 1] (A-31)

where X is the Lagrange multiplier. Differentiating Equation (A-31) with

respect to _ and setting the result to O in the usual manner yields

kq=K ° (A-32)

Thus, the attitude quaternions which produce stationary values of Equa-

tion (A-28) are the eigenvectors of K , and the Lagrange multipliers are the

corresponding eigenvalues. Equation (A-32) thus can be written as

kk q-'k = K " qk ; k = 1, 2, 3, 4 (A-33)

where the qk are the eigenvectors of K and the k k are the eigenvalues.

It has been shown thus far that the eigenvectors _k produce stationary values

of g(q) . To show which one of the four will produce the largest g let Equa-

tion (A-33) be substituted into Equation (A-28) to yield

_T
g(q-k ) =clk " [k kqk ]=k k (A-34)
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Hence, the four stationary g values, in decreasing order of value, are

gl =X1

g2 =X2

g3 = X3

g4 = k4

(A-35)

The eigenvector which maximizes g , and which thus is the optimal attitude

estimate, is 91 , the eigenvector which pertains to the most positive eigen-

value klO

It is noted that the extremum problem posed by Equations (A-28), (A-29), and

(A-30} also is solved in Reference 6, pages 117 through 118, using a more

cumbersome approach°

A.4 STUDY OF THE MAGNITUDES OF THE EIGENVALUES OF K

The material in the preceding subsection has demonstrated that the four eigen-

values, i k, of K are real and that k I +k 2 +k 3 +k 4 = 0 . By definition,

k I >k 2 _k 3 >k 4 , and it follows therefore that XI>0 and k 4<0 . Since k 1

and k 4 have opposite signs, the condition k I > X 4 thus does not necessarily

that IxI I> Ix41.

This subsection presents more information on the relative values and magnitudes

of the k k . This information is useful for investigation of the main remaining

task hi the q-method development: namely, selection of an algorithm for de-

termining the eigenvector 91 of K . The question of whether or not the con-

dition Ik 11 > Ikjl ; J = 2 , 3 , 4 will be encountered in all situations is of

particular concern. This is because the power method of extracting eigenvalues
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and eigenvectors is a prime candidate for computing ql , and it is known that

the power method will converge to ql only if this condition is satisfied.

It can be shown that the kK are related to three scalars d 1 > d 2 > d 3 > 0 by

the following equations:

= + d 3_'1 dl + d2

)'2 =dl-d2-d3

= +d - d 3X3 -dl 2

k 4 = -d 1 - d 2 + d 3

(A=36)

The desired information concerning relative values of the k k and lXkI can

be obtained from Equations (A-36).

The three d.j elements above are the positive square roots (dj = _j) of the

eigenvalues y. of the matrix C = BTB . The derivation of Equation (A-36)
]

utilizes material in the R-method of solving the least-squares attitude problem.

The derivation is lengthy, and to avoid a major interruption in the present

material it has been relegated to Section A. 6 of this appendix.

The facts which can be deduced from Equations (A-36) and the relations

d l_d 2 >d 3 _0 are as follows:

I. Ii> 0

2. 12 can be >0 , 0 , or <0

3. _3 _ 0 with equality encountered only if d 3 = 0 and d I = d 2

4. k4<0

5. kz >_'2' k3' k4

6. )_2 _ k3 v_ith equality encountered only if d I = d 2
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7. k2 2 X4 with equality encountered only if d 1 = d 2 = d 3

8. _3 _ X4 with equality encountered only if d2 = d3

9. II11> IA.21

11. IXll _ Ix41with equality encountered only if d 3 = 0

Z2. Ixzl _ Ixa[ with _qu_ity encountered only if (a) d 3 = 0 or

(b) d 1 = d 2

13. Ix21 _ Ix41 with equalityencountered o-_y if dI = d2 = d3

14. I),31 _ IX41 with equality encountered only if d2 = d 3

In determining the above equalities and inequalities, the case d 2 = d 3 = 0 was

not considered. This condition is encountered only if all V. are colinear.z

Thus it is a case for which attitude cannot be computed. It yields )'1 = X2 =

-k3 = -_4 "

Item 5 verifies that the least-squares attitude solution is unique, Items 9 to

Ii, however, are the most significant ones because they verify that the power

method will converge to ql unless d 3 = 0 . The condition d 3 = 0 is encoun-

tered (i) when there are only two reference vectors, V--_. , or (2) when there
1

are more than two V. , but they all lie on a common plane. Because the V.
1 I

all lie close to a common plane in HEAO-A, it follows that the power method

will converge slowly in this application unless special provision to accelerate

convergence is made.

A.5 DETERMINATION OF EIGENVECTOR 91 OF K BY THE POWER
METHOD

A. 5.1 Description of the Approach

As noted previously, the normalized eigenvector ql which pertains to the

largest eigenvalue .k 1 of K is the optimal attit_ade estimate. The analysis
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to dateon the problem of extracting ql has beendevoted mainly to the power

method, a well-known technique which is described in References 6 through 9.

Becauseeigenvector ql is the only variable which must be obtained in the
present problem, the power method here can consist merely of sequential

passes p through the equation

"qP=K' _p-i (A-37)

The significance of the prime on K above is discussed later. The input

for any pass is the normalized output of the previous pass.

The power method requires a check to determine when convergence has

occurred. The recommended technique of testing for convergence utilizes

the quaternion properties of the qP o With this method, the quaternion

= [_p-lj -1 _p is computed at the end of each pass p using quaternion mul-

tiplication. -_ specifies the small rotation which would rotate the attitude frame

existing at the start of pass p onto that seen at the end of pass p . The angle,

C , of this rotation then is computed from the vector portion, _, of _ via

e : 2 arc sin Theappro mation : is acceptablehere,

since G is very small. Convergence is deemed to have occurred when G is

smaller than a selected input constant.

A.5.2 Convergence

A mathematical study of the conditions under which convergence to ql can be

expected and of the convergence rate has been relegated to Section A. 5.4 to

avoid an undesirable interruption in the present material. Only t_he most per-

tinent conclusions regarding convergence and convergence rate will be noted

at this point,

The eigenvalue of K whose absolute value is greater than that of all other

eigenvalues is called the dominant eigenvalue )_D ' and the eigenvalue of the
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next largest absolute value is called the second dominant eigenvalue kD2 .

Assuming that k D is unique (that is, that IkD] > IXD21 ) , the power method

always will converge to the eigenvector qD which pertains to k D . (There is
-0

one exception here, and it occurs when the a priori input vector q is orthog-

onal to qD ") This result is proved in References 6 and 7 and in Section A. 5.5.

Section A. 4 showed that in the present application, k 1 is the dominant eigen-

value and k4 is the second dominant eigenvalue. Thus, except for one special

situationdescribed below, the conditions Ikll > IX41 > IX21 , IX3] will be en-

countered and convergence to 91 will be attained.

The case where kD = -kD2 presents a problem. This is the special situation

which was noted above. Convergence will not occur in this case (page 40 Refer-

ence 7). This case is encountered in the present problem with d3 = 0 and thus

k4 = -XI . A technique for surmounting the difficultyis discussed in the next

subsection.

It is demonstrated in the references and in Section A. 5.4 that the most signifi-

cant factor affecting the rate of convergence is the ratio ]XD2]/]kD] . The

smaller this ratio, the faster the convergence rate. The ratio k4/k I is of

prime concern in the present problem.

A. 5.3 Improvement of Convergence by Eigenvalue Shifting

A. 5.3.1 Introduction

A simple technique for alleviatingconvergence problems involves using the

following matrix K' in place of K

K' = K - s! (A-38)

where s is a suitably chosen negative scalar. It will be shown below that the

term -sI will (i) shift all the eigenvalues of K by s (that is, k_ = k k - s) ,
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thereby assuring convergence and improving the convergence rate, and (2) will

not alter the eigenvectors q-k " This approach is recommended in Reference 7.

The above two claims concerning Equation (A-38) are easily proved. The proof

starts with the basic eigenvalue equation which was listed earlier as Equa-

tion (A-32).

=

where k k signifies any of the four eigenvalues and qk is the corresponding

eigenvector. Subtracting sqk from both sides produces

Cxk - s]_k = [K - sI]_ k (A-39)

Introducing new notation yields

%=

where

K' = K - sl (A-41)

)_k = _k - s (A-42)

Equation (A-40) constitutes a new eigenvalue problem. The new eigenvalues

k'k are related to the eigenvalues, kk , of the original matrix K, as indicated

in Equation (A-42); and the new eigenvectors are identical with those, qk ' of

K.
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A. 5.3.2 Criteria for Selecting the Shift s

Figure A-1 is a sample plot of the variation of the eigenvalues k' =k;k lto4

and their absolute ratios Ir_l = Ikjl/]k[I ; j= 2 to 4 with the eigenvalue shift]

parameter s . Only negative s values are shown on the figure, since positive

values are not of current interest. The initial (s = 0) eigenvalue values, kk ,

= = 4 k =-.9 . These values are
were chosen to be k 1 =1.0 , k 2 .3 , k 2 -. , 3

not intended necessarily to be typical of those encountered on HEAO-A. The

plots were obtained merely by the use of Equation (A-42).

Figure A-I shows the positive eigenvalues )_ and X_. increasing linearly as

s is made more and more negative. The negative eigenvalues k_ and k'4

are driven linearly toward zero, they reach zero at s = k 3 and s = k 4 re-

spectively, and thereafter increase linearly. As a result, I r_[ increases in

size monotonically toward unity while I r_] and I r_l are driven to zero,

after which they also increase monotonically toward unity. Mathematically at

least, k 2 can be negative rather than positive. In such a case, the I r_l plot

would resemble the Ir_l and Ir_l plots on Figure A-I.

T ?

Figure A-I shows that k 2 will replace k 4 as the second dominant eigenvalue

if s is made more negative than the value indicated as s* . By use of Equa-

tion (A-42) s* can be shown to be

s* = .5 EX2 + )_4] (A-43)

This result concurs with the results given in References 7 and I0. The param-

eter s* can also be specified as a function of the elements d. by substitution
J

of Equation (A-36) into Equation (A-43) to yield

s* : -d 2 (A-44)
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The parameter s* generally is considered to be the optimal value of s , since

it minimizes the magnitude of the largest Ir'l ratio. The question of the opti-

mality of s* as defined is considered in Section A. 5.4, where it is shown that

s* is not necessarily the s which minimizes the number of iterations needed

for convergence in any specific problem. The remainder of this appendix,

however, will regard s* as the optimum s .

A. 5.3.3 Implementation of the Optimal Shift s*

Implementation of the optimal shift s* in a computer routine is usually not

possible, since the k k are not known a priori. In the present attitude problem

however, it is possible to compute s* exactly. The technique involves use of

Equation (A-44).

It will be recalled that in Section A. 4 the claim was made that

d. =+ _ j = 1, 2, 3 (A-45}
3 j

where the yj are the eigenvalues of the 3 x 3 matrix C

T
C = B B (A-46)

and

n __T
B = W.,V.

1 1
3x3 i=l

(A-47)

Itfollows that d2 , and thus s* , can be obtained easily from the eigenvalue

72 of C . An algorithm for computing :/2 can be developed by expanding

det 1c - 7II =o (A-48)
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to yield

(

3 2
7 +rely +m2Y+m 3 =0 (A-49)

where

= - + + (A-50a)m 1 [Cll e22 c33]

2 2 2 ]= + + - -
m 2 [c11 e22 ell c33 c22 e33 - el2 el3 c23 (A-50b)

2 + 2 2 _ 2012 c23]m 3 = [Cll 023 c22 c13 + c33 c12 - Cll c22 033 c13 (A-50e)

The scalars c above are the elements of C . Equation (A-49) can be solved

for 71 , 72 , Y3 using the analytical solution for a cubic polynomial. A suitable

form of this solution is expressed by the following set of equations

1 2
a 1 = m 2 - -_ m I (A-51a)

2 3 ml m2

bl - 27 ml 3 + m 3 (A-51b)

(A-51c)

_b = Arc cos
3bll

2 alfl/
0 _ ¢ g 2ff (A-52)
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-m I ¢

311 = T + 2fl cost (A-53a)

-ml [cos 3Y2 - 3 fl ¢ - V/-3sin _] (A-53b)

Y3 - 3 fl cos-_ + _/-3sin (A-53c)

Equations (A-47), (A-46), (A-50) to (A-52), (A-53b), (A-45), and (A-44) taken

in that order, constitute the full algorithm for computation of s* .

The above equations should always yield

a I <0 (A-54a)

_0
(A-54b)

Yl >- Y2 >73 a 0 (A-54c)

The scalars a I and b I above are the coefficients of the equation

3

x + alx + b I = 0 (A-55a)
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which is obtained by inserting the transformation

m
1

7 = x - 3 (A-55b)

into Equation (A-49).

The above technique, in conjunction with Equations (A-36), enables all the

eigenvalues )'1 " " " X4 of K to be established. A potential alternative to the

power method in the present problem involves using k I , as computed above,

in the equation

[K - I_.1] • ql =_ (A-56)

which could be solved algebraically for 91 .

A. 5.3.4 A Suboptimal Technique for Computing the Shift

This section derives a suboptimal algorithm which has also been proposed for

computing the eigenvalue shift s . The derivation starts with the matrix B

which was employed previously,

n

B = W.. V. (A-57)
L 1i=l

Now note the following approximate relation

W,

W._ _lR . V,
"L V. 1

1

(A-58)
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where w. and v. are the lengths of W. and V., respectively. The above
1 1 1 1

relation omits system errors, particularly those due to the star tracker. Sub-

stituting Equation (A-58) into (A-57) produces

wi -_ _-__T
B _E- R. V. o V. (A-59)

V. I 1
1

Moving R outside the summation yields

B_R.A (A-60)

where A is a newly defined 3 x 3 matrix which is

Wo

'V-.
_-_v i i V.I

(A-61)

i The trace of A is

W,

ETrace A = -- V. • V. : w.v.
V. I I i I
/i

(A-62a)

In the special case where the observation and reference vectors are unweighted,

this reduces to

Trace A = n (A-62b)

where n is the number of observations. EquatiorLs (A-62) will be employed to

compute trace A in the final s algorithm.
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Let the eigenvalues of A be designed as _1 ' _2 ' _3 " It is trivial to show

from Equation (A-61) that A = A T . Therefore, _1 ' c_2 ' _3 will be real. Let

the subscripts be ordered such that _1 _ a2 > _3 " By forming the product
_T
x ° A • _, where _ is an arbitrary vector of dimension 3 and A is defined

by Equation (A-61), it can be shown that A is at least positive semi-definite.

Therefore _1 > _2 _ _3 > 0 .

Recall the matrix C which was introduced earlier

C = B T B (A-63)

and recall from Section A.4 that the eigenvalues of C are 71 , Y2 ' 73 where

7j =d 2j , and d 1 _d 2 >d 3 _0 . Substitution of Equation (A-60) into(A-63)

yields

C_ ATRTRA :A 2 (A-64)

Applying a well known result in matrLx theory (Reference 12) to Equation (A-64)

2 2 d2yields _,: _c_. and hence (_. _ . Since c_. _ 0 and d. _ 0 , it follows that
J J J J J J

_. _ d.. Using the relation
J J

Trace A = (_1 + _2 + _3 (A-65)

it therefore follows that

+ d 2 +d =), (A-66)Trace A _ d 1 3 1
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where the secondpart of Equation (A-66} was obtained from Equation (A-36}.

Applying a previously mentioned relation, )`1 + )`2 + )`3 + )`4 = 0 , to Equa-

tion (A-66) now yields

-. 5 Trace A _ . 5 [)`2 + )'3 + _4 ] (A-67)

The optimum eigenvalue shift was shown earlier to be s* = . 5 [)`2 + )`4] " From

Equation (A-67), it is obvious that use of the relation

1
s = ---Trace A (A-68)

2

will provide a very rough approximation to the optimal shift. This equation,

however, will usually cause an overshift because of the undesirable )`3 term

in Equation (A-67). The relation

1
s = - -- Trace A (A-69)

3

often should be better. Equation (A-69) utilizes the approximation )'3 = "5 [k2 +

k 4] , while Equation (A-68) employs the approximation k 3 = 0 .

In summary, the operations required by the suboptimal eigenvalue shift method

are as follows:

i.

2.

A. 5.4 Analysis of Convergence and Convergence Rate

This subsection considers the convergence and convergence rate of the power

method at a more detailed mathematical level than has been done to this point.

The work is devoted mainly to the derivation of Equation (A-79), which specifies

Compute Trace A with Equation (A-62a) or, when applicable, (A-62b)

Compute the shift s with Equation (A-68) or (A-69)
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the relationship betweeneigenvalue ratios, initial conditions, and convergence

properties. Material from References 6 and 7 has been used in the study.

Recall that kk and qk ' k = 1 to 4 , are the eigenvalues and eigenvectors of

K . Therefore, they satisfy the equation

)'k qk = K- qk (A-70)

Through manipulation of Equation (A-70), it is possible to obtain the more gen-

eral relation

P = K p -
%k qk " qk (A-71)

where superscript p is an arbitrary positive integer signifying that

K are to be raised to the pth power.

In the present work, the q-k have unit length by definition. Since K

and symmetric, it follows that

k k and

is real

-T -
qk " qm = 5kin

A-72)

where 5kr n is the Kronecker delta. The multiplication which is used in Equa-

tion (A-72) and in later equations of this subsection is the usual Euclidean inner

(dot) product.

Since the four qk are linearly independent (orthonormM, to be more precise,

as indicated inuEquation (A-72)), they can be regarded as a set basis vectors
4

in a real Euclidean vector space R It thus is certain that any vector q in
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R4 . q be thecan be expressed as a linear combination of the qk Letting _o

a priori attitude estimate which is employed in an application of the power

method, therefore

mO _ m

q = clql + c2q2 +c3q3 +c4q4 (A-73)

__o

The c's above are constants which depend on q and the -qk ; the precise

relation can be obtained easily from Equations (A-72) and (A-73)

-T _o
Ck = qk " q (A-74)

The first pass through the power method equation yields

--I --o
q = K. q (A-75)

Ignoring, for simplicity, the normalizing operation which (in the current appli-

cation of the power method) is performed at the end of each pass, successive

applications of Equation (A-75) yield

_p Kp _o= - q (A-76)

where "qP is the resultant at the end of the pth pass. (In the present notation,

superscript p , when used with scalars and matrices, sigllifies that these

quantities are to be raised to the pth power except where noted otherwise in

the text. Superscript p is used with vectors, however, only as a label to

designate pass or iteration number. )
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Next, premultiply Equation (A-73) by Kp . Application of Equations (A-74)

and (A-71) and use of the obviously valid assumption that the dominant eigen-

value, kI , is not zero yields

(A-77)

Equation (A-77) is the basic result of the present derivation. Itcan be made

applicable to the shifted-eigenvalue application by merely adding primes to the

_P= [x_]P [c 191 + e2_),_] q2 +c3_-_1 ] q3 + c4\k_] 94] (A-78)

Recall that, by definition, X 1 _ )'2 > X3 _ )'4 " It can be shown that when the

star observation set contains at least two noncolinear vectors, the eigenvalue

shifting technique (X_ = Xk - s) can always yield Ixil> Ixhl, Ixhl, Ix l.
In this case, Equation (A-78) shows that

p--_

if c I / 0 . This, in effect, means convergence toward -ql since the computed

_P always can be normalized to unity. If c I = 0 the power method obviously

will not converge to ql " Equation (A-74) shows that the condition c I = 0 will
_O

be encountered only if q is accidently chosen orthogonal to 91 .
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Assurning cI / 0 , Equation (A-78) can be expressed in the form

4

j=2 ]

(A-80a)

where

(A-80b)

The supers cript

The three e!P)_
J J

response modes.

p is used in ¢:P)¢ above only as a label.
J

terms in Equations (A-80) can be regarded as transient

Equation {A-80a) shows that the rate of convergence of the

power method is determined entirely by the rates at which the amplitudes _.(P)
]

of these three modes attenuate toward zero, and Equation (A-80b) shows that

these three attenuation rates are determined solely by the eigenvalue ratios

k'/)_'j,_.l " The k{/k_ ratios, however, are not the only phenomena, which deter-

mine the number of iterations required to converge (that is, to reach a selected

converge criteria) in any specific application. Equations (A-74) and (A-79b)

_O
show that the selected initial condition q affects the necessary number of

iterations via the initial mode amplitudes _!o) = c./c
.] j 1

It will be recalled that the optimal value s* of the eigenvalue shift parameter

s shifted the eigenvalues to the point where k 2 = -k 4 . Equations (A-80) show

that this approach causes dle mode 2 and mode 4 responses to decay at the same

rate. By doing this, it maximizes the speed of response of the slowest of the

three transient modes.

In any specific application_ however, s _ is not necessarily the s which will

yield convergence in the minimtm_ number of iterations. This phenomena was
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seen in the simulation runs discussed in Section A. 7 and was not understood

prior to the present analysis. Figure A-2 illustrates the phenomena. As

_(o)
shown in Figure A-2, the initialvalue, _4 = c4/cI , of Mode 4 is much larger

than _2-(°)A= e2/c I of Mode 2. For simplicity, the initialvalue _o} of Mode 3

is assumed negligible. As a result, overshifting s beyond s* to produce a

very rapid decay of Mode 4 has the potentialityof producing convergence in a

lesser number of iterations than would be obtained by use of s* . Iteration N c

in the sketch is, roughly, the crossover iterationnumber. That is, the s < s*

approach will produce faster convergence than the s = s* one ifit can achieve

convergence in fewer than N iterations. Otherwise, the s = s* method is
c

the faster one.

Equations (A-80) show that the transient mode values ¢!o) will switch signs
J

on each successive iteration if ki/X _ is negative. This is the case with

Modes 3 and 4 in the present application (no attempt was made to portray the

effect in Figure A.2). Thus, large deviations in the computed qP values will

be seen on each successive iteration whenever the amplitudes of Modes 3 or 4

are significant compared to that of Mode 2. This phenomenon was encountered

frequently in the simulation runs discussed in Section A. 7 and was not under-

stood prior to the present analysis. The phenomenon has some potential for

disturbing the usual convergence criteria methods which utilize the _ results

obtained on successive iterations.

A.5.5 Improvement of Convergence Rate by Raising K' to a Power

The eigenvalue shifting technique discussed in Section A. 5.3 is not the only

approach for enhancing the convergence rate of the power method. A simple

approach t_bat can be used to supplement the eigenvalue shifting technique con-

sists of raising K' to a power, i.e., m , and performing the power method

computations on [K'] m rather than on K' . This approach was recommended

for the present High Energy Astronomy Observatory (HEAO) application by

B. Gambhir. It is noted briefly and favorably in References 9 and 10.
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It is possible to show that when the power method computations are performed

on K 'm , the dynamic response equations corresponding to Equation (A-80a)

for the simple K' case are

%

i .?

4

qP =k'mP Cl [ql +_.= _(p)j_]
(A-8 la)

where now

_!P)- f2_ I_ mp

This method's potential for reducing the required number of iterations is evi-

dent, since the eigenvalue ratios are raised to the power mp rather than

merely to the power p . If applied to an actual application, such as HEAO,

some study would be needed to establish a criteria for selecting m .

A. 5.6 An Alternate Algorithm for Computing ql

The technique discussed in the preceding subsections for extracting the first

eigenvector ql from K' treats K' as a general real symmetric matrix and

91 as a general real eigenvector. That is, the technique does not make direct

use of the facts that ql is a rotation quaternion and that K' can be logically

separated into the submatrices indicated in Equation (A-24b). The present

subsection summarizes the main features of a method recommended by

P. Davenport which does utilize these special features of ql and K'

As in the DOAOP routine, the approach utilizes an intermediate body coordinate

frame B obtained from an a priori attitude estimate R ; the coordinate
O o

frame relationships shown earlier in Figure 3-3 are applicable here. In a

preliminary operation, the algorithm transforms the matrix B of Equation (A-9)
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via B _- B - R T . This operation, in effect, transforms the catalog vectors
o

V-_. onto Frame B resolution. As a result, the quaternion _ which is estab-
1 O

lished by the basic algoritlun defines the orientation of the spacecraft body

frame B relative to B . The operations which are necessary to transform
o

into the desired attitude matrix, R, of Frame B relative to Frame GCI

are straightforward and will not be delineated here.

Since q is a rotation quaternion, it is representable in the form shown earlier

as Equation (A-11).

q=

sin

COS

(A-Ii)

Assuming that the a priori attitude estimate R is reasonably accurate, the
O

rotation angle 8 will be small, thus cos (8/2) _ 1 .

The algorithm is an iterative one much like the power method. At each itera-

tion p it computes an estimate k' of the dominant eigenvalue using a special-
P

ized form of the Rayleigh quotient approximation (Reference 7). The basic

Rayleigh equation is

-T • K'. %
k' _ qp-i -i (A-82)
p -T

%-i" %-I

The p's above desig_ate pass or iteration mnnber. For convenience, the

present subsection presents the p's as subscripts rather than as superscripts,

as is done elsewhere in the report. Equation (A-82) computes the true eigen-

value exactly if P_I--I is the exact eigenvector.

A-35



Let the __qD-1in Equation (A-82) be broken into components Q-_n-1and %-1£.

as indicated in Equation {A-11) and let K' be broken into the submatrices

specified in Equation (A-24b). The result, after multiplying out, is

(

i _ .

_T . S'-Q +2
X, = p-i I>-I qp-l_T _1+(_'__1

1 ° +

(A-83)

where for simplicity we have used S' =S- I (or+ s) and or' =if- s

Recall now that Q/q = Y where Y is the Gibbs vector used in DOAOP.

tion (A-83) can be expressed in terms of -_ by simple manipulation

Equa-

_T --* _T ---. S' Y +2 - Y +(:r_

k' :__I p-i }_-i (A-84)
o

P 1 + 1 Yp-1

Equation (A-84) is the equation actually used to compute

Consider next the basic equation of the power method

k' in the algorithm.
P

_k T K T

with exact equality being encountered when k'p and _p are an exact eigenvalue

and its associated eigenvector. The % on the right side of Equation (A-85)

will be replaced by -qp-I in order to develop an algorithm which employs

iteration. Separating qp-i and K' into their components as was done before

and multiplying out yields

Qp = X' Is • Qp-1 + Zqp-1] (A-86a)
P
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q = -- [ . +_'
p -i

P

(A-86b)

Manipulation of Equation (A-86a) produces

m

Y k' IS'. Yp-I
P p

(A-87)

As noted earlier, cos (0/2) _ 1 because of the transformation to Frame B
O

resolution and qp-1 _ qp _ i . Thus, LqD-I/qP is very close to unity and

Equation (A-87) can be approximated by

I Is,- (A-SS>
Y - k' °Yp p-i

P

which is the equation actually employed in the algorithm.

In summary, the algorithm consists basically of Equations (A-84) and (A-88).

These are to be employed iteratively, as in the usual power method.

The algorithm provided by Equations (A-84) and (A-88) now will be compared

with the simplified DOAOP algorithm which was presented earlier in Section 2.2

and was summarized as Equation (2-26). In order to make the comparison,

Equation (A-84) is first substituted into Equation (A-88). The definitions of S'

and (_' are then introduced

S' : B + B T - I [(_+ s] (A-89a)

0" = (3" - s (A-89b)
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where

(;= Trace B (A-89c)

and some minor manipulations are made to yield

-_ B T -_
" Yp-i.5 [I +Y%_ I ] [[B+ I (or+s)] "Yp-i

y =

P Yp-1 " Z + -p-1 ° [B - .5 I(ff+ s)] .Yp_l

(A-90)

The similarity between Equation (2-26) and Equation (A-90) is immediately

evident. In fact, if the eigenvalue shift parameter s is given a value of -(r ,

Equation (A-90) reduces to Equation (2-26) exactly. Therefore, the algorithm

(Equations (A-84) and (A-88)) discussed in this subsection can be regarded as

a generalization of the algorithm of Section 2.2 (and of the algorithm used in

DOAOP) to include a variable value of s . Conversely, the DOAOP algorithm

can be regarded as a special s = -(_ implementation of Equations (A-84) and

(A-88).

A. 6 PERTINENT MATERIAL ON THE R-METHOD

The main purpose of this section is to derive Equations (A-36), upon which the

preceding study of the power technique convergence in the q-method application

depended heavily. The only way this derivation can be performed involves

going through the main steps in the development of the R-method of solving the

least-squares attitude problem. Material on the R-method was presented

previously in References 3 and 5.

The development can start with Equation (A-10)

g(R) : Trace R BT Trace B T R (A-IO)
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The problem is to determine (directly) the matrix R which maximizes g .

Since R is an attitude matrix, it is subject to the constraints

RTR = I (A-91)

Det R = +1 (A-92)

If Equation (A-91) is satisfied, it is certain that Det R = +1 . Thus, the effect

of the constraint specified by Equation (A-92) would be to eliminate some solu-

tions for R which otherwise would be acceptable.

The constraint imposed by Equation (A-91) can be handled by the usual Lagrange

multiplier approach. In the present problem, the Lagrange multipliers can be

arranged in a symmetric 3 x 3 matrix H and incorporated into the least-squares

gain function, Equation (A-6), as follows

g'(R) = Trace BTR - .5 Trace EH{RTR - I]]
(A-93)

Equation (A-93) is different from the usual static optimization problem, since

a matrix R, rather than a vector, is to be optimized. However, the present

problem can be handled by an analogous technique; a gradient matrix method.

The necessary gradient matrix expressions can be obtained from Reference 13

or can be developed using index notation. The expressions are

Trace RB T : B (A-94)
bR

b Trace _H [_ R 1 2 RH-- I T _ }] = (A-95)
bR
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Whendeveloping (A-95), use was made of the previously mentioned restriction

H = H T •

Differentiating Equation (A-93) with respect to R , employing Equations (A-94)

and (A-95), and setting the result to zero yields

B = RH (A-96)

The problem posed by Equation (A-96) is to factor B into the product of (1) an

orthogonal matrix R of Determinant + 1 and (2) a symmetric matrix H. The

resulting matrices R will yield stationary values of g(R) in Equation (A-10).

The gain function g can be expressed as a function of H . The derivation con-

sists merely of premultiplying Equations (A-96) by R T and transposing to

obtain

H = BTR (A-97)

Comparison of Equations (A-10) and (A--97)shows that

g = Trace H (A-98)

Equation (A-98) will be employed later.

The problem which will be pursued now is to develop a technique for establish-

ing H . For this work, it will be convenient to introduce the following new

3 × 3 symmetric matrix C.

n D

C = BTB : VW T WV T [WT "_.] V. * V. (A-99)
i ] I ]

i=zj=i
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The second and third portions of Equation (A-99) follow from the definition of

B provided by Equation (A-9). Substitution of Equation (A-96) into (A-99) and

utilizing H = H T yields

C = H 2 (A-100)

The eigenvalues of C are all real, since C = C T (Reference 11, Theorem 4.6).

Let the eigenvalues of C be designated as )'j and let them be numbered such

that )'1 a 72 _ )'3 " The matrix C will be noanegative definite, since it is fac-

torable into BTB (Reference 11, Theorem 4.18). Therefore 71 _)'2 >)'3 _ 0

(Reference 11, Definition 4.9). Rank C will be equal to Ra_ B (Reference 11,

Theorem 3.15 and Problem 3.12). Therefore, the number of zero eigenvalues

of C is (3 - Rank B).

Since C = C T , orthogom_d matrices U exist which will diagonalize C with a

congruence transformation, even if the -/j are not all distinct (Reference 11,

Corollary 4.8). The columns u. of U are the normalized eigenvectors of C ,
]

and the nonzero elements of the resulting diagonal matrix 1_ are the eigen-

values yj . Thus

1" = V2 C • U (A-101a)

o

where

U = _ u2 u3 _1
(A- 10ib)
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and

U T" U=I (A-101c)

Equation (A-101a) can be inverted to yield

C=U - F-U T (A-102)

The following new diagonal matrix D now will be defined

D

[_i dl 0 O0 1
l 0 P2 d2

0 0 _3 d3

(A-103)

where

dj = + v_j
(A-104a)

and

pj =± 1
(A-104b)

The motivation for introducing D should soon become apparent. The

normegative by definition° Since 71 a 7 2 >- 7 3 >- 0 , it is obvious that

d 1 _ d 2 a d 3 -> 0.
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There are eight possible triads [_1/_2 D3 ] " Thus, when d 3 _ 0 , there are

eight possible D matrices. Let the triads be numbered as follows:

[/_1/_2/_3]1 =[1, 1, 1] [D1/_2/_3] 5

[D1/_2123} 2 = [1, -1, -1] [/_lD2D3}6

[_IbL2 _3 } 3 = [- i, I, - I } [D 1_ 2 _3 }7

[/_1/_2/_3 ] 4 = [ - 1, - 1, 1 } [/_1/_ 2/_ 3 ] 8

=[i,i,-i]

=[i,-i, i]

--[-i,i,I]

=[-i,-i,-i]

Comparison of Equations (A-101a) with (A-103) and (A-104) shows that

D 2 = y" (A-106)

for all D matrices. Using Equations (A-100), (A-102), and (A-106), it is trivial

to show that

H 2 = U ° D 2 ° U T (A-107)

Equation (A-107) can be solved for H. This solution must satisfy the supple-

mentary requirement H = H T . The result is

T
H= Uo D -U (A-108)

The validity of Eqruation (A-108) can be verified by multiplying H by itself and

employing uTu = I to reproduce Equation (A-107).

Eqtmtion (A-108) establishes H as a function of the eigenwalues y. and eigen-
J

BTBvectors u. of C : . However, it yields up to eight possible H matrices
J
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corresponding to the eight possible {_j] sets of Equation (A-105). The prob-
lems now are to establish (1) which ones canbe eliminated becausethey yield

attitude matrices R with determinant of -1 and (2)which of the remaining ones

yields the largest value of the least-squares gain function g .

Taking the determinant of Equation (A-108), employing (A-103), and utilizing

the relation Det U = ± 1 yields

Det H = Det D = d 1 d 2 d3 ]_1 _2P3 (A-109)

Taking the determinant of Equation (A-97) and inserting (A-109) produces

dld2d3 PlP2P3 = Det B Det R (A-110)

For Det R = +i , it therefore is necessary that

dld2d 3 pll_2U3 = Det B (A-111)

A supplementar-_ analysis which will not be delineated here indicated that the

condition Det B < 0 will never be encountered. (The analysis used the A matrix

of Section A, 5.3.4 and, in particular, Equations (A-60) and (A-61). Thus,

DetB _ 0 . It is not difficult to show that all d. are nonzero when Det B /0 .
J

Therefore, Equation (A-Ill) demonstrates that for the usual case of Det B > 0 ,

the condition Det R = +i necessitates that (I) all pj be positive or (2) two pj

be negative and the remaining one be positive. This requirement thus eliminates

the [_ ] triads numbered 5 through 8 in Equations (A-106). Triads I to 4 yield

Det R = +I and thus are acceptable.

The development in the paragraph above is not applicable when Det B = 0 .

The previously mentioned study which employed the A matrix of Section A. 5.3. -i
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indicated that the condition Det B = 0 will be encountered only if (i) all refer-

ence vectors V i are colinear (Rank B = i) or (2) all V.I lie in a common plane

(Rank B = 2). It can be shown that the first of these cases implies d I > d 2 =

d 3 = 0 . This case is of no interest here, since it is known that attitude cannot

be computed uniquely in this condition. The second case, however, is of inter-

est, since it includes the common condition where only two observation vectors

are available; it is known that attitude can be established uniquely in this situa-

tion. It is possible to verify that the condition Rank B = 2 implies d I _ d 2 >

d 3 = 0 . When d 3 = 0 , the sign of /_3 is meaningless. Inspection of Equa-

tions (A-105) should show that when d 3 = 0 the only four distinct _.] sets' j

are the ones numbered i through 4. A supplementary study, which also will

not be detailed here, verified that it is possible to obtain a separate solution

for R, with determinant of +i , for each of these four [/_j] sets in the d 3 = 0

case.

To determine which one of the four _'acceptable" H matrices (those which pertain

to [Pi ] sets 1 to 4) yields the largest value of the least-squares gain function

g , take the trace of Equation (A-108) and utilize (A-103)

Trace H = Trace [uDuT] = Trace [DuTu]

= Pl dl + _t2 d2 + _t3 d3

= Trace D

(A-112)

Comparison of Equations (A-98) and (A-II2) shows that

= + P3 d3g Pl dl +t_2 d2 (A-113)
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Since there are four acceptable {/2j} triads (Triads 1 to 4 of Equations (A-105)),

Equation (A-113) shows that there are four stationary gain values gk " Equa-

tions (A-105) and (A-113) show that these are

gl = dl + d2 + d3 (A-114a)

g2 = dI - d2 - d3 (A-ll4b)

g3 = -dl + d2 - d3 (A-114c)

g4 =-dl - d2 +d3 (A-ll4d)

Since d I _d 2 >-d 3 z 0 , Equations (A-If4) show that gl > g2 >- g3 >-g4 '

Therefore, the condition Pl = P2 = _3 = + i is the one which produces the

largest value of the least-squares gain function, and thus is the condition which

should be used in Equation (A-103) to establish D .

The derivation of the algorithm for computing R for the case d 3 / 0 now can

be completed. (The d 3 = 0 case requires special procedures which are not

discussed here.) Suitable equations for R can be obtained by either substitut-

ing Equation (A-108) into (A-97) and solving for R

R = [B T] -1 UDU T (A-115)

or, optionally, by substituting (A-108) into (A--96) and solving for R

-1 T
R = B U D U (A-116)
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To summarize, with the R-method the attitude matrix can be computed using

either Equations (A-115) or (A-116). The matrix B in these two equations is

specified by Equation (A-9). The matrix U is made up, columnwise, of the

/%orthonormal eigenvectors u. of BTB . The non-zero elements d. of the
J J

diagonal matrix D are the positive square roots of the eigenvalues _/j of BTB .

Use of negative signs with two of the d. elements when forming D yields an
3

attitude matrix with determinant of +1 which stationizes, but does not maxi-

mize, the least-squares gain function g ; the values of g for these three cases

are indicated by Equations (A-114 b through d).

The four gi equations, Equations (A-114), are of more immediate interest

than is the overall R-method of attitude computation. These equations indicate

the four stationary values gk of the least-squares gain function g. They are

produced by four attitude matrices Rk _ It was demonstrated in Section A. 3

that g also is stationized by the four normalized eigenvectors qk of the ma-

trix K. The pertinent equations were Equations (A-35). The qk are the atti-

tude quaternions, and the stationary values, gk _ of g are the corresponding

eigenvalues, k k , of K ° The stationary values gk produced by the Ph< are

identical to the corresponding stationary values gk produced by the qk because

the Rk and the corresponding qk are merely different parameterizations of

the same attitude. From Equations (A-35) and (A-114), thus

=k 1 +d +dgl = dl 2 3

g2=k2 =d -d -d1 2 3

g3 = X3 = -dl + d2 - d3

= + d
g4:X4 -dl- d2 3

(A-117)
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These are the relations listed earlier as Equation (A-36) and employed in the

subsequent studies of the feasibility of determining the dominant eigenvect_r of

K by use of the power method.

A. 7 SIMULATION TESTS OF THE q-METHOD--INTRODUCTION

A computer routine (SNAPLS) of the q-method was coded and several series of

test runs were made. The purposes of the runs were to verify the basic validity

of the q-method of attitude determination, to evaluate its performance in the

HEAO-A application, and to determine whether or not it should be included as

part of HEAO-A's operational attitude support system.

In the first version of SNAPLS, the attitude eigenvector 91 of K' was com-

puted by the power method approach discussed in Section A. 5. The eigenvalue

shift (k' = k - s) technique was employed to enhance the convergence rate.

The shift parameter s was calculated via the suboptimal technique of subsec-

tion A.5.3.4. The so-called K 'm method, discussed in subsection A.5.5, in

which convergence rate is further enhanced by raising K' to a power m be-

fore performing the matrix iterations was not used. Only the direct method of

solving the eigenvector problem was implemented.

technique described in subsection A. 5.6, in which

ql was not employed.

That is, the alternative

-_ is computed rather than

The test runs used simulated star observations similar to those which will be

obtained in the spinning mode of HEAO-A. The simulated observations all lay

close to a common plane, the spacecraft's spin plane. Figure A-3 portrays

the geometry. For convenience, the spacecraft spin axis, z B , was chosen

to coincide with the celestial north pole in the _'uns° With tMs _B attitude,

the projected location of any observed star, (e.g., star i), on the spacecraft

spin plane can be specified by the right ascension angle, _. , of the star, andi

the location of the star above or below the spin plane is the declination 5..
1
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Runs were made with perfect star observations and also with noisy observa-

tions. In the latter runs, no attempt was made to duplicate precisely the noise

characteristics expected on HEAO. Specifically, the noise and inaccuracy which

will result, in the actual HEAO system, whenthe star observations are rotated

via imperfect gyro data were not modeled directly.

A. 7.1 Summary

The first runs made using the power method were all plagued by extremely slow

convergence. In these early rtms, the maximum number of iterations at first

was limited to 50. This limit, however, proved to be far too low; the indica-

tions were that typically a thousand or so iterations might be needed in the

HEAO application.

In order to obtain a better understanding of the convergence rate difficulties,

a series of runs was made in which the power method was replaced by a pack-

aged subroutine which computed all four eigenvalues and eigenvectors of K .

This subroutine was EIGRS, which is part of the International Mathematical

and Statistical Library (IMSL). With the EIGRS approach, the symmetric ma-

trix K is first reduced to a symmetric tridiagonal matrix T by means of the

Householder method. The eigenvalues and eigenvectors of T then are com-

puted using the QL method. The eigenvalues of K are identical to those of

T . The eigenveetors of K are computed, in the final operation performed by

the routine, by backtransforming those of T . One of the minor advantages of

EIGRS is that, unlike the power method, EIGRS does not require the external
_O

generation of an initial attitude estimate q

The version of SNAPLS which included EIGRS in place of the power method

computed attitude correctly in the test runs and encountered no noticeable

problems. To save time in developing the operational attitude support software

for HEAO-A, this version of SNAPLS was incorporated into the operational

system. That is, it was considered preferable to code the least-squares
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altitude estimation portion of the operational system immediately with this

version of SNAPLS, rather than to delay the co_ng with further attempts to

solve the power method's convergence rate problem.

Later simulation runs and analyses verified that the slowness of convergence

of the power method in the early runs was caused by the fact that the simulated

stars were not spread out over a large region of the celestial sphere. Instead

they were bunched in a small clump. The selected maximum separation angle

in declination, ASMX = 5MX - 5MM ' between observations generally was

8 degrees to 19 degrees in the runs. The 19-degree value is considerably

larger than the 8-degree limit which will actually be encountered on HEAO--A.

However, the selected maximum separation angle in right ascension, A_MX =

- c_1 , was only 2 degrees to 20 degrees. This is much narrower than then

values, generally about 20 degrees to 360 degrees, which normally can be an-

ticipated in the operational HEAO-A problem.

Data presented in the next subsection shows that when the observed stars all

lie close to a common plane but are spread out over a large separation angle

in this plane (ASMX small, AaMX large) the values of the eigenvalues k.t of

K are such that ]r2] , Ir31<<l and Ir4] _1 . (The present section uses

the notation rj = kj/k 1 and r'.] = jlk"/k'_) . The eigenvalue shifting approach

(k_ = k'l - s) can be quite effective in enhancing convergence in this case. That

is, it can yield I r_t , Ir_l , I r_l << 1. However, when the observed stars

all lie in a small clump (_6MX small, _MX small), the condition [re[,

Ira I, Ir41 1 will be encountered. In this case, the effectiveness of the

eigenvalue shifting method is very limited because it is not possible to make

all three ratios Ir_]<<l . This provides an explanation for the slowness of
J

power method convergence seen in the simulation tests.

It is currently believed that use of the K 'm approach of Section A. 5.5 would

enable the power method to conve:cge accurately in a reasolmble nmnber of

ite_.tions, even under geometrical conditions as adverse as those of the early
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simulation runs. Simulation runs to test this belief, however, were not made

in the present study.

There is considerable evidence that the rate of convergence encountered in the

simulation runs was significantly slower than that of DOAOP. DOAOP always

converges in far fewer than 1000 iterations even when dealing with clump sizes

of only a few degrees. The question, however, was not explored in the present

work.

A. 7.2 Discus sion of the Final Series of Runs

This subsection discusses the final series of simulation runs made in the study.

The primary purpose of this series was to check the effect of maximum planar

separation angle A_MX on the convergence properties of the power method.

Both the power method and the EIGRS method were used. The main function

of EIGRS here was to establish the eigenvalues )'1 to k 4 . Knowledge of k 1

to k 4 is essential for analysis of results produced by the power method, since

the power method's convergence properties depend heavily upon them.

Twelve runs were made in the series. Only the last seven, however, are

described here. All inputs were identical for the seven runs except for the

spacing in right ascension, _'I = c_i-i - c_i , between observations. Ten ob-

servations were simulated, their declination values 6. being as follows: 0, 1,
i

2, 3, 4, 2, 0, -2, -3, -4 degrees. All the observations were made error-free

and were given the same least-squares weighting factor a. = i. 0 . The obser-
t

ration spacing in right ascension RA is delineated in the following tabulation.

Run

6

7

8

9

i0

11

12

Separation in RA between

each observation (DEG)

1

2

4

8

16

32

40

Separation in IKA between

first and last observation

A_BL x (DEG)

9

18

36

72

144

288

360
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The number of iterations actually reqmred by the power method for conver-

gence and the final error in attitude are shown in Table A-1. In these runs,

< 0MI N where 6p is the angularconvergence occurred, by definition, when Op
-4

rotation during iteration p and 6MI N was set to. 6 x 10 degrees. The con-

vergence numbers in Table A-1 have a tolerance of roughly ±5. The variable

=- ' . The values of s* in
s* is the optimal shift value which yields k_, X 4

runs 6 to 12, respectively, were -. 037, -. 109, -. 400, -1.47, -4.39, -4.50.

The variable s = -3.33 above is a suboptimal value which was computed using

Equation (A-4), with the gain factor k set to 1/3.

Table A-1 provides sample values of the relationship between A_: X and N c

The results cannot be accepted as universal, however, because N is depen-
C

_O

dent on eMi N and also on the initial attitude estimate q . For the input

conditions which were used, convergence was achieved in a reasonably small

. < 70 ° the suboptimalnumber of iterations when _'MX > 790 For 5£_MX

eigenvalue-shift method produced faster convergence than the optimal method,

at the expense of a larger final attitude error. Increasing Ac_MX beyond 90 °

evidently does not alter the convergence response significantly.

Table A-2 shows the initial conditions _!o) , j = 2, 3, 4 of the three transient
J

response modes discussed in Section A. 5.4. These ¢(o) values were calcu-
J

lated using Equations (A-74), (A-80b), and the eigenvectors qk generated by

EIGRS. The _(o) results are heavily dependent on the relation between the
J

--O

initial attitude estimate q and the true attitude ql However, they are also

influenced significantly by the observation geometry, as Table A-2 demon-

strates.

The remaining data to be presented in this subsection were obtained from the

eigenvalues X. which were computed by EIGRS. Table A-3 shows the values
i

of the three d..
J
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Table A-I. Number of Iterations for Convergence

>
I

c_

RUN

6

7

8

9

10

11

12

Z_c(
MX

(DEGREES)

9

18

$ = $"-

ITERATIONS

TO CONVERGE (N c)

36

72

144

288

360

1020

420

130

40

10

10

10

FINAL ATTITUDE
ERROR (DEGREES)

s = -3.33

ITERATIONS

TO CONVERGE (N c)

FINAL ATTITUDE
ERROR (DEGREES)

.2£ E--4

.35 E--4

.21 E-4

.62 E--5

.47 E--4

.47 E-4

.30 E-4

340

220

90

30

20

20

20

.88 E--2

.34 E-2

.11 E--2

.29 E--3

.51 E-6

.54 E--6

.51 E--6

ii
i



Table A-2. Initial Values of the Transient Response Modes

._c_ MX 100 %(0)RUN (DEGREES} 100 e2 ° 100 e3°

6

7

8

9

10

11

12

9

18

36

72

144

288

36O

-.073

.156

.316

.594

.853

.831

.593

-- 1.280

1.110

.945

.703

-.083

.018

--.638

.200

--.654

--.831

--.914

-.974

-.996

-.961
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TableA-3. Results of d1 _ d2 , and d 3

_a MX dl d2 d 3
RUN (DEGREES)

6

7

8

9

10

11

12

9

18

36

72

144

288

360

9.956

9.881

9.589

8.522

5.612

5.607

5.496

........ J

.0367

.1089

.4004

1.468

4.38O

4.393

4.500

.00722

.00972

.01278

.01015

.O0830

.00073

.00380
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The d. are the positive square roots of the eigenvalues of BTB and they are
J

of fundamental importance as indicators of the basic attitude determination

geometry. Table A-3 shows that the condition d 3 < < d 1 was encountered in

all runs. This is because all the star observations lay close to a common

plane. Table A-3 also shows that the condition d 2 < < d 1 was encountered

when _MX was small,.but that d2 became comparable in size to d 1 for

Ac_MX _ 90 ° . This result tends to validate an earlier assertion that a single

observation or multiple colinear observations will yield d 2 = d 3 = 0 .

The eigenvalues k i of K and their ratios r.j =kj/k I are shown in Table A-4.

This table shows that the expected result k 1 > k 2 > k 3 > k 4 was encountered

in all runs. However, for A_MX < 18 degrees the deviations between the four

absolute values Iki] are small. Increasing A_MA X causes )'2 and )'3 to

move in toward the origin but produces a negli_ble effect of k 1 and )'4 " Each

of the three transient response modes decays in proportion to [r.J p , where
J

p is the iteration number and is to be interpreted as a power. Table A-4

therefore indicates that the basic power method (without eigenvalue shifting)

would not converge adequately for any of the runs. For small A_MX , eonver-

genee of all three modes would be unreasonably slow. For AffMX of 70 de-

grees or more, modes 2 and 3 would decay with sufficient rapidity, but the

rate of mode 4 would not be improved at all. As an example of the slowness of

convergence which TabIe A-5 indicates, for an r. of , 9980, approximately
J

1150 iterations would be needed to attenuate a modal amplitude ¢. to 10 per-
J

cent of its initial value°

The improvement in convergence rate which can be affected by the eigenvalue

shifting teclmique is shown in Table A-5. These results tend to colffirm the

results shown in Table A-I which were obtained with the power method in the

simulation runs. When C_MA X > 70 degrees or so, Table A-5 indicates that

convergence should have been rapid for both the s = s* and the s = -3.33

cases, since all three ratios Ir!l are much less than unity. \Vhen A_ is
j MX
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small, however, the table indicates that convergence should have been slow

because r' was close to unity in both cases.
2
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Table A-4. Eigenvalues k. and Their Ratios
1

Ac_ MX
RUN (DEGREES _1 L2 -_3 --_'4 r2 --r3 -r4

6

7

8

9

10

11

12

9

18

36

72

144

288

360

10.0000

10.0000

10.0000

10.0000

10.0000

10.0000

10.0000

9.912

9.763

9.179

7.044

1.223

1.213

.992

9.926

9.782

9.199

7.065

1,240

1.215

1.O00

9.986

9,981

9.979

9.980

9.983

9.9985

9.992

.9912

.9763

.9179

.7044

.1223

.1213

.0992

.9926

,9782

.91£9

.7065

.1240

.1215

.1000

.9986

,9981

.9979

.9980

.9983

.99985

.9992
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Table A-5. Ratios of Shifted Eigenvalues

>
i

RUN

6

7

8

9

10

11

12

zl_MX

(DEGREES)

18

36

72

144

288

360

r 2' = --r 4'

.991

.976

.921

.742

.390

.390

.379

e
-r 3 -r 2'

s = --3.33

- .9854

-.957

-,846

-.488

.218

.221

.241

.993

.982

.938

.778

.341

.341

.324

r 3 '

--.494

--.483

--.440

--280

.157

.159

.175

--r4_

.499

.499

.498

.498

.499

.500

.499



G LOSSARY

a

a.
1

A

a1

B

B

B
0

b

b 1

C

c k

C

D

d.
3

fl

f

GCI

g( )

H

See Figure 3-7, Block A1

Weighting factor. See Equations (2-1), (2-2) and (2-3)

See Equation (A-61)

See Equations (A-51a), (A-55a)

See Equation (2-18)

Body-fixed reference frame in spacecraft

Frame aligned with the preliminary estimate of B. See Fig-

ure 3-3

See Figure 3-7, Block A1

See Equations (A-51b)_ (A-55a)

Cosine

-T -o

qk" q

BTB

Diagonal matrix of the eigenvatues of H

Absolute vaIue of eigenvalue j of H; d. =_.
J ,_j

See Equation (A-51c)

See Figure 3-7, Block A1

Geocentric inertial coordinate frame

Least-squares gain function

Symmetric matrix of La_ange multipliers. See Equa-

tion (A- 72)

3 >_ 3 Identity matrix



K

K'

m.
]

N
C

n

P

P' PI' P2}
ql' q2

Q

Q

q

_0

q

-p
ql

R

R
0

r
ij

See Equations (A-24)

K- sI

Least-squares loss flmction

See Equations (A-49), (A-50)

Number of iterations required for convergence

Number of observations to be used in the least-squares atti-

tude computation

Attitude matrix indicating the orientation of frame B relative

to frame B ° See Figure 3-3
o

Coefficients used in the study of the main orthogonalization

operation in the preliminary attitude computation; see Equa-

tions (3-16) and (3-28)

Matrix whose columns are the eigenvectors of K

The vector part of quaternion

The scalar part of quaternion

Attitude quaternion

Eigenvector k of K

Attitude quaternion and first eigenvector of-K

Initial estimate of ql

Estimate of q'_ obtained from pth pass tl_ough the power

method equation

Attitude matrix indicating the orientation of frame B relative

to frame GI

The initial estimate of R. See Figure a-a

The elements of R
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r

J

r!
]

S

S

k./k ; j=2, 3, 4
j 1
? f

Xi/k 1 ; j =2, 3, 4

BT+B

Negative scalar employed to shift the eigenvalues k k of K

Sine

S

S*

t.

I

t
r

U

A

U

J

U.
l

U.
l

U.
I

UP.
I

v

UP.
I

V

V.
l

V.
l

V L

See Figure 3-7_ Block A1

The optimum value of s

The actual time at which Observation i was performed

The time at which attitude is to be computed

/x

Matrix comprised of the eigenvectors u. of C
J

The jth eigenvector of C

R .V.
O I

The transformed reference vectors in the preliminary atti-

tude computation. See Figure 3-7

The transformed reference vectors generated by the main

orthonormalization operation in the preliminary attitude com-

putation. See Figure 3-7

The transformed observation vectors in the preliminary atti-

tude computation. See Figure 3-7

The transformed observation vectors generated by the main

orthonormalization operation in the preliminary attitude com-

putation. See Figure 3--7

3 × n matrix comprised of the reference vectors V.
I

Unweighted (i. e., unit) reference vector (frame GI resolution)

Weighted reference vector (frame GI resolution)

First reference vector selected for the preliminary attitude

computation
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%

V°

I

W

A

W.
I

W.
I

W°

I

X

Second reference vector selected for the preliminary attitude

computation

The length of reference vector V.
I

3 x n matrix comprised of the observation vectors W.
1

Unweighted (i.e. unit) observation vector (frame B resolution)

Weighted observation vector (frame B resolution)

The length of observation vector W.
I

Unit vector along the axis of the rotation which rotates

frame GCI onto frame B

,<

X

X

x., x 2I

5(

YP

Y1

Y

Yl' Y2

Z

J

aXc_
nix

E!p)
J

See Figure 3-7, Block A2

See Equation (A-55)

See Equations (3-16)

The attitude vector. See Equation (2-5)

The predicted Y during DOAOP's iterative attitude compu-

tation. See Figure 3-2, Block D

The first _" vector which is passed to the iterative attitude

computation loop of DOAOP. See Figure 3-2, Block C

See Figure 3-7, Block A2

See Equations (3-16)

See Equations (2-17) and (2-22)

Euler angles. See Figures 3-4 and 3-5

Eigenvalue j of A

Separation angle, in spacecraft spin plane, between first and

last observed star

Amplitude of transient response mode j at end of iteration p
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F

J

E.
J

0

A

(Y, (Yl , (Y2

(3"

Diagonal matrix of the eigenvalues Yi of C

The jth eigenvalue of C

Observation error vector, See Equation (3-6)

The angular magnitude of the rotation which rotates frame GCI

onto frame B

Diagonal matrix of the eigenvalues k k of K

The kth eigenvalue of K

The kth eigenvalue of K' ,°k_ = k k - s

+-i. See Equation (A-82)

+-I

Trace B

¢

@Li

_v

Special Notations

/

)

)

)

( )

L_-ii

See Equation (A-52)

Angle between V L and V.I

A A

Angle between V L and V K

Angle between _r L and @K

Absolute value

3 x 1 Unit vector

3 x 1 Nonunit vector

3 x 3 Matrix

Matrix, not necessarily 3 x 3

3 x 3 skew symmetric matrix arrangement of a vector

Euclidean norm
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